ﻻ يوجد ملخص باللغة العربية
For the particles undergoing the anomalous diffusion with different waiting time distributions for different internal states, we derive the Fokker-Planck and Feymann-Kac equations, respectively, describing positions of the particles and functional distributions of the trajectories of particles; in particular, the equations governing the functional distribution of internal states are also obtained. The dynamics of the stochastic processes are analyzed and the applications, calculating the distribution of the first passage time and the distribution of the fraction of the occupation time, of the equations are given.
The effectiveness of Bayesian Additive Regression Trees (BART) has been demonstrated in a variety of contexts including non parametric regression and classification. Here we introduce a BART scheme for estimating the intensity of inhomogeneous Poisso
The term moderate deviations is often used in the literature to mean a class of large deviation principles that, in some sense, fill the gap between a convergence in probability to zero (governed by a large deviation principle) and a weak convergence
We present a machine learning model for the analysis of randomly generated discrete signals, which we model as the points of a homogeneous or inhomogeneous, compound Poisson point process. Like the wavelet scattering transform introduced by S. Mallat
A generalization of the Poisson distribution based on the generalized Mittag-Leffler function $E_{alpha, beta}(lambda)$ is proposed and the raw moments are calculated algebraically in terms of Bell polynomials. It is demonstrated, that the proposed d
Levy walk is a fundamental model with applications ranging from quantum physics to paths of animal foraging. Taking animal foraging as an example, a natural idea that comes to ones mind is to introduce the multiple internal states for dealing with th