ﻻ يوجد ملخص باللغة العربية
Outlier detection is an important task for various data mining applications. Current outlier detection techniques are often manually designed for specific domains, requiring large human efforts of database setup, algorithm selection, and hyper-parameter tuning. To fill this gap, we present PyODDS, an automated end-to-end Python system for Outlier Detection with Database Support, which automatically optimizes an outlier detection pipeline for a new data source at hand. Specifically, we define the search space in the outlier detection pipeline, and produce a search strategy within the given search space. PyODDS enables end-to-end executions based on an Apache Spark backend server and a light-weight database. It also provides unified interfaces and visualizations for users with or without data science or machine learning background. In particular, we demonstrate PyODDS on several real-world datasets, with quantification analysis and visualization results.
PyODDS is an end-to end Python system for outlier detection with database support. PyODDS provides outlier detection algorithms which meet the demands for users in different fields, w/wo data science or machine learning background. PyODDS gives the a
There is an increasing need to bring machine learning to a wide diversity of hardware devices. Current frameworks rely on vendor-specific operator libraries and optimize for a narrow range of server-class GPUs. Deploying workloads to new platforms --
We propose a novel deep learning method for local self-supervised representation learning that does not require labels nor end-to-end backpropagation but exploits the natural order in data instead. Inspired by the observation that biological neural n
Learning continually from non-stationary data streams is a long-standing goal and a challenging problem in machine learning. Recently, we have witnessed a renewed and fast-growing interest in continual learning, especially within the deep learning co
Complex environments and tasks pose a difficult problem for holistic end-to-end learning approaches. Decomposition of an environment into interacting controllable and non-controllable objects allows supervised learning for non-controllable objects an