ترغب بنشر مسار تعليمي؟ اضغط هنا

Two-Step market clearing for local energy trading in feeder-based markets

141   0   0.0 ( 0 )
 نشر من قبل Mohsen Khorasany
 تاريخ النشر 2019
  مجال البحث مالية
والبحث باللغة English




اسأل ChatGPT حول البحث

Recent innovations in Information and Communication Technologies (ICT) provide new opportunities and challenges for integration of distributed energy resources (DERs) into the energy supply system as active market players. By increasing integration of DERs, novel market platform should be designed for these new market players. The designed electricity market should maximize market surplus for consumers and suppliers and provide correct incentives for them to join the market and follow market rules. In this paper, a feeder-based market is proposed for local energy trading among prosumers and consumers in the distribution system. In this market, market players are allowed to share energy with other players in the local market and with neighborhood areas. A Two-StepMarket Clearing (2SMC) mechanism is proposed for market clearing, in which in the first step, each local market is cleared independently to determine the market clearing price and in the second step, players can trade energy with neighborhood areas. In comparison to a centralized market, the proposed method is scalable and reduces computation overheads, because instead of clearing market for a large number of players, the market is cleared for a fewer number of players. Also, by applying distributed method and Lagrangian multipliers for market clearing, there is no need for a central computation centre and private information of market players. Case studies demonstrate the efficiency and effectiveness of the proposed market clearing method in increasing social welfare and reducing computation time.



قيم البحث

اقرأ أيضاً

This paper proposes a market clearing mechanism for energy trading in a local transactive market, where each player can participate in the market as seller or buyer and tries to maximize its welfare individually. Market players send their demand and supply to a local data center, where clearing price is determined to balance demand and supply. The topology of the grid and associated network constraints are considered to compute a price signal in the data center to keep the system secure by applying this signal to the corresponding players. The proposed approach needs only the demanded/supplied power by each player to reach global optimum which means that utility and cost function parameters would remain private. Also, this approach uses distributed method by applying local market clearing price as coordination information and direct load flow (DLF) for power flow calculation saving computation resources and making it suitable for online and automatic operation for a market with a large number of players. The proposed method is tested on a market with 50 players and simulation results show that the convergence is guaranteed and the proposed distributed method can reach the same result as conventional centralized approach.
We consider a two-stage electricity market comprising a forward and a real-time settlement. The former pre-dispatches the power system following a least-cost merit order and facing an uncertain net demand, while the latter copes with the plausible de viations with respect to the forward schedule by making use of power regulation during the actual operation of the system. Standard industry practice deals with the uncertain net demand in the forward stage by replacing it with a good estimate of its conditional expectation (usually referred to as a point forecast), so as to minimize the need for power regulation in real time. However, it is well known that the cost structure of a power system is highly asymmetric and dependent on its operating point, with the result that minimizing the amount of power imbalances is not necessarily aligned with minimizing operating costs. In this paper, we propose a mixed-integer program to construct, from the available historical data, an alternative estimate of the net demand that accounts for the power systems cost asymmetry. Furthermore, to accommodate the strong dependence of this cost on the power systems operating point, we use clustering to tailor the proposed estimate to the foreseen net-demand regime. By way of an illustrative example and a more realistic case study based on the European power system, we show that our approach leads to substantial cost savings compared to the customary way of doing.
Interbank markets are fundamental for bank liquidity management. In this paper, we introduce a model of interbank trading with memory. Our model reproduces features of preferential trading patterns in the e-MID market recently empirically observed th rough the method of statistically validated networks. The memory mechanism is used to introduce a proxy of trust in the model. The key idea is that a lender, having lent many times to a borrower in the past, is more likely to lend to that borrower again in the future than to other borrowers, with which the lender has never (or has in- frequently) interacted. The core of the model depends on only one parameter representing the initial attractiveness of all the banks as borrowers. Model outcomes and real data are compared through a variety of measures that describe the structure and properties of trading networks, including number of statistically validated links, bidirectional links, and 3-motifs. Refinements of the pairing method are also proposed, in order to capture finite memory and reciprocity in the model. The model is implemented within the Mason framework in Java.
In this paper, we formulate a method for minimising the expectation value of the procurement cost of electricity in two popular spot markets: {it day-ahead} and {it intra-day}, under the assumption that expectation value of unit prices and the distri butions of prediction errors for the electricity demand traded in two markets are known. The expectation value of the total electricity cost is minimised over two parameters that change the amounts of electricity. Two parameters depend only on the expected unit prices of electricity and the distributions of prediction errors for the electricity demand traded in two markets. That is, even if we do not know the predictions for the electricity demand, we can determine the values of two parameters that minimise the expectation value of the procurement cost of electricity in two popular spot markets. We demonstrate numerically that the estimate of two parameters often results in a small variance of the total electricity cost, and illustrate the usefulness of the proposed procurement method through the analysis of actual data.
This paper designs a market platform for Peer-to-Peer (P2P) energy trading in Transactive Energy (TE) systems, where prosumers and consumers actively participate in the market as seller or buyer to trade energy. An auction-based approach is used for market clearing in the proposed platform and a review of different types of auction is performed. The appropriate auction approach for market clearing in the proposed platform is designed. The proposed auction mechanism is implemented in three steps namely determination, allocation and payment. This paper identifies important P2P market clearing performance indices, which are used to compare and contrast the designed auction with different types of auction mechanisms. Comparative studies demonstrate the efficacy of the proposed auction mechanism for market clearing in the P2P platform.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا