ترغب بنشر مسار تعليمي؟ اضغط هنا

Networked relationships in the e-MID Interbank market: A trading model with memory

109   0   0.0 ( 0 )
 نشر من قبل Salvatore Miccich\\`e
 تاريخ النشر 2014
  مجال البحث مالية
والبحث باللغة English




اسأل ChatGPT حول البحث

Interbank markets are fundamental for bank liquidity management. In this paper, we introduce a model of interbank trading with memory. Our model reproduces features of preferential trading patterns in the e-MID market recently empirically observed through the method of statistically validated networks. The memory mechanism is used to introduce a proxy of trust in the model. The key idea is that a lender, having lent many times to a borrower in the past, is more likely to lend to that borrower again in the future than to other borrowers, with which the lender has never (or has in- frequently) interacted. The core of the model depends on only one parameter representing the initial attractiveness of all the banks as borrowers. Model outcomes and real data are compared through a variety of measures that describe the structure and properties of trading networks, including number of statistically validated links, bidirectional links, and 3-motifs. Refinements of the pairing method are also proposed, in order to capture finite memory and reciprocity in the model. The model is implemented within the Mason framework in Java.



قيم البحث

اقرأ أيضاً

Using a data set which includes all transactions among banks in the Italian money market, we study their trading strategies and the dependence among them. We use the Fourier method to compute the variance-covariance matrix of trading strategies. Our results indicate that well defined patterns arise. Two main communities of banks, which can be coarsely identified as small and large banks, emerge.
In recent years a new type of tradable assets appeared, generically known as cryptocurrencies. Among them, the most widespread is Bitcoin. Given its novelty, this paper investigates some statistical properties of the Bitcoin market. This study compar es Bitcoin and standard currencies dynamics and focuses on the analysis of returns at different time scales. We test the presence of long memory in return time series from 2011 to 2017, using transaction data from one Bitcoin platform. We compute the Hurst exponent by means of the Detrended Fluctuation Analysis method, using a sliding window in order to measure long range dependence. We detect that Hurst exponents changes significantly during the first years of existence of Bitcoin, tending to stabilize in recent times. Additionally, multiscale analysis shows a similar behavior of the Hurst exponent, implying a self-similar process.
In informationally efficient financial markets, option prices and this implied volatility should immediately be adjusted to new information that arrives along with a jump in underlyings return, whereas gradual changes in implied volatility would indi cate market inefficiency. Using minute-by-minute data on S&P 500 index options, we provide evidence regarding delayed and gradual movements in implied volatility after the arrival of return jumps. These movements are directed and persistent, especially in the case of negative return jumps. Our results are significant when the implied volatilities are extracted from at-the-money options and out-of-the-money puts, while the implied volatility obtained from out-of-the-money calls converges to its new level immediately rather than gradually. Thus, our analysis reveals that the implied volatility smile is adjusted to jumps in underlyings return asymmetrically. Finally, it would be possible to have statistical arbitrage in zero-transaction-cost option markets, but under actual option price spreads, our results do not imply abnormal option returns.
The topological properties of interbank networks have been discussed widely in the literature mainly because of their relevance for systemic risk. Here we propose to use the Stochastic Block Model to investigate and perform a model selection among se veral possible two block organizations of the network: these include bipartite, core-periphery, and modular structures. We apply our method to the e-MID interbank market in the period 2010-2014 and we show that in normal conditions the most likely network organization is a bipartite structure. In exceptional conditions, such as after LTRO, one of the most important unconventional measures by ECB at the beginning of 2012, the most likely structure becomes a random one and only in 2014 the e-MID market went back to a normal bipartite organization. By investigating the strategy of individual banks, we explore possible explanations and we show that the disappearance of many lending banks and the strategy switch of a very small set of banks from borrower to lender is likely at the origin of this structural change.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا