ترغب بنشر مسار تعليمي؟ اضغط هنا

Transient anomalous charge production in strong-field QCD

79   0   0.0 ( 0 )
 نشر من قبل Naoto Tanji
 تاريخ النشر 2016
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

We investigate axial charge production in two-color QCD out of equilibrium. We compute the real-time evolution starting with spatially homogeneous strong gauge fields, while the fermions are in vacuum. The idealized class of initial conditions is motivated by glasma flux tubes in the context of heavy-ion collisions. We focus on axial charge production at early times, where important aspects of the anomalous dynamics can be derived analytically. This is compared to real-time lattice simulations. Quark production at early times leading to anomalous charge generation is investigated using Wilson fermions. Our results indicate that coherent gauge fields can transiently produce significant amounts of axial charge density, while part of the induced charges persist to be present even well beyond characteristic decoherence times. The comparisons to analytic results provide stringent tests of real-time representations of the axial anomaly on the lattice.

قيم البحث

اقرأ أيضاً

Considering the general structure of the two point functions of quarks and gluons, we compute the free energy and pressure of a strongly magnetized hot and dense QCD matter created in heavy-ion collisions. In presence of strong magnetic field we foun d that the deconfined QCD matter exhibits a paramagnetic nature. One gets different pressure in a direction parallel and perpendicular to magnetic field due to the magnetization acquired by the system. We obtain both longitudinal and transverse pressure, and magnetization of a hot deconfined QCD matter in presence of magnetic field. We have used hard thermal loop approximation (HTL) for heat bath. We obtained completely analytic expression for pressure and magnetization under certain approximation. Various divergences appearing in free energy are regulated using appropriate counter terms. The obtained anisotropic pressure may be useful for magnetohydrodynamics description of a hot and dense deconfined QCD matter produced in heavy-ion collisions.
We perform real-time lattice simulations of nonequilibrium quark production in the longitudinally expanding QCD plasma. Starting from a highly occupied gluonic state with vacuum quark sector, we extract the time evolution of quark and gluon number de nsities per unit transverse area and rapidity. The total quark number shows after an initial rapid increase an almost linear growth with time. Remarkably, this growth rate appears to be consistent with a simple kinetic theory estimate involving only two-to-two scattering processes in small-angle approximation. This extends previous findings about the role of two-to-two scatterings for purely gluonic dynamics in accordance with the early stages of the bottom-up thermalization scenario.
56 - Naoto Tanji 2018
Axial charge production at the early stage of heavy-ion collisions is investigated within the framework of real-time lattice simulations at leading order in QCD coupling. Starting from color glass condensate initial conditions, the time evolution of quantum quark fields under classical color gauge fields is computed on a lattice in longitudinally expanding geometry. We consider simple color charge distributions in Lorentz contracted nuclei that realize flux tube-like configurations of color fields carrying nonzero topological charge after a collision. By employing the Wilson fermion extended to the longitudinally expanding geometry, we demonstrate the realization of the axial anomaly on the real-time lattice.
Considering the strong field approximation we compute the hard thermal loop pressure at finite temperature and chemical potential of hot and dense deconfined QCD matter in lowest Landau level in one-loop order. We consider the anisotropic pressure in the presence of the strong magnetic field i.e., longitudinal and transverse pressure along parallel and perpendicular to the magnetic field direction. As a first effort, we compute and discuss the anisotropic quark number susceptibility of deconfined QCD matter in lowest Landau level. The longitudinal quark number susceptibility is found to increase with the temperature whereas the transverse one decreases with the temperature. We also compute the quark number susceptibility in the weak field approximation. We find that the thermomagnetic correction to the quark number susceptibility is very marginal in the weak field approximation.
We report on the first computation of the strong running coupling at the physical point (physical pion mass) from the ghost-gluon vertex, computed from lattice simulations with three flavors of Domain Wall fermions. We find $alpha_{overline{rm MS}}(m _Z^2)=0.1172(11)$, in remarkably good agreement with the world-wide average. Our computational bridge to this value is the Taylor-scheme strong coupling, which has been revealed of great interest by itself because it can be directly related to the quark-gluon interaction kernel in continuum approaches to the QCD bound-state problem.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا