ﻻ يوجد ملخص باللغة العربية
Nematodes have evolved to swim in highly viscous environments. Artificial mechanisms that mimic the locomotory functions of nematodes can be efficient viscous pumps. We experimentally simulate the motion of the head segment of Caenorhabditis elegans by introducing a reciprocating and rocking blade. We show that the bio-inspired blades motion not only induces a flow structure similar to that of the worm, but also mixes the surrounding fluid by generating a circulatory flow. When confined between two parallel walls, the blade causes a steady Poiseuille flow through closed circuits. The pumping efficiency is comparable with the swimming efficiency of the worm. If implanted in a sealed chamber and actuated remotely, the blade can provide pumping and mixing functions for microprocessors cooled by polymeric flows and microfluidic devices.
Marangoni propulsion is a form of locomotion wherein an asymmetric release of surfactant by a body located at the surface of a liquid leads to its directed motion. We present in this paper a mathematical model for Marangoni propulsion in the viscous
Cell division timing is critical for cell fate specification and morphogenesis during embryogenesis. How division timings are regulated among cells during development is poorly understood. Here we focus on the comparison of asynchrony of division bet
In this fluid dynamics video, we demonstrate the microscale mixing enhancement of passive tracer particles in suspensions of swimming microalgae, Chlamydomonas reinhardtii. These biflagellated, single-celled eukaryotes (10 micron diameter) swim with
The mixing of binary fluids by stirrers is a commonplace procedure in many industrial and natural settings, and mixing efficiency directly translates into more homogeneous final products, more enriched compounds, and often substantial economic saving
The energy pathways from propagating internal waves to the scales of irreversible mixing in the ocean are not fully described. In the ocean interior, the triadic resonant instability is an intrinsic destabilization process that may enhance the energy