ﻻ يوجد ملخص باللغة العربية
The energy pathways from propagating internal waves to the scales of irreversible mixing in the ocean are not fully described. In the ocean interior, the triadic resonant instability is an intrinsic destabilization process that may enhance the energy cascade away from topographies. The present study focuses on the integrated impact of mixing processes induced by a propagative normal mode-1 over long term experiments in an idealised setup. The internal wave dynamics and the evolution of the density profile are followed using the light attenuation technique. Diagnostics of the turbulent diffusivity $K_{T}$ and background potential energy $BPE$ are provided. Mixing effects result in a partially mixed layer colocated with the region of maximum shear induced by the forcing normal mode. The maximum measured turbulent diffusivity is 250 times larger than the molecular value, showing that diapycnal mixing is largely enhanced by small scale turbulent processes. Intermittency and reversible energy transfers are discussed to bridge the gap between the present diagnostic and the larger values measured in Dossmann et al, Experiments in Fluids, 57(8), 132 (2016). The mixing efficiency $eta$ is assessed by relating the $BPE$ growth to the linearized $KE$ input. One finds a value of $Gamma=12-19%$ larger than the mixing efficiency in the case of breaking interfacial wave. After several hours of forcing, the development of staircases in the density profile is observed. This mechanism has been previously observed in experiments with weak homogeneous turbulence and explained by argument. The present experiments suggest that internal wave forcing could also induce the formation of density interfaces in the ocean.
Internal gravity waves play a primary role in geophysical fluids: they contribute significantly to mixing in the ocean and they redistribute energy and momentum in the middle atmosphere. Until recently, most studies were focused on plane wave solutio
We report evaluations of a resonant kinetic equation that suggest the slow time evolution of the Garrett and Munk spectrum is {em not}, in fact, slow. Instead nonlinear transfers lead to evolution time scales that are smaller than one wave period at
To date, axisymmetric internal wave fields, which have relevance to atmospheric internal wave fields generated by storm cells and oceanic near-inertial wave fields generated by surface storms, have been experimentally realized using an oscillating sp
The internal dynamics during the coalescence of a sessile droplet and a subsequently deposited impacting droplet, with either identical or distinct surface tension, is studied experimentally in the regime where surface tension is dominant. Two color
This study employs an improved volume of fluid method and adaptive mesh refinement algorithm to numerically investigate the internal jet-like mixing upon the coalescence of two initially stationary droplets of unequal sizes. The emergence of the inte