ﻻ يوجد ملخص باللغة العربية
Cell division timing is critical for cell fate specification and morphogenesis during embryogenesis. How division timings are regulated among cells during development is poorly understood. Here we focus on the comparison of asynchrony of division between sister cells (ADS) between wild-type and mutant individuals of Caenorhabditis elegans. Since the replicate number of mutant individuals of each mutated gene, usually one, is far smaller than that of wild-type, direct comparison of two distributions of ADS between wild-type and mutant type, such as Kolmogorov- Smirnov test, is not feasible. On the other hand, we find that sometimes ADS is correlated with the life span of corresponding mother cell in wild-type. Hence, we apply a semiparametric Bayesian quantile regression method to estimate the 95% confidence interval curve of ADS with respect to life span of mother cell of wild-type individuals. Then, mutant-type ADSs outside the corresponding confidence interval are selected out as abnormal one with a significance level of 0.05. Simulation study demonstrates the accuracy of our method and Gene Enrichment Analysis validates the results of real data sets.
Aging in Caenorhabditis elegans is controlled, in part, by the insulin-like signaling and heat shock response pathways. Following thermal stress, expression levels of small heat shock protein 16.2 show a spatial patterning across the 20 intestinal ce
To study how a zygote develops into an embryo with different tissues, large-scale 4D confocal movies of C. elegans embryos have been produced recently by experimental biologists. However, the lack of principled statistical methods for the highly nois
Nematodes have evolved to swim in highly viscous environments. Artificial mechanisms that mimic the locomotory functions of nematodes can be efficient viscous pumps. We experimentally simulate the motion of the head segment of Caenorhabditis elegans
The connectome, or the entire connectivity of a neural system represented by network, ranges various scales from synaptic connections between individual neurons to fibre tract connections between brain regions. Although the modularity they commonly s
Graph theoretical analyses of nervous systems usually omit the aspect of connection polarity, due to data insufficiency. The chemical synapse network of Caenorhabditis elegans is a well-reconstructed directed network, but the signs of its connections