ﻻ يوجد ملخص باللغة العربية
Kepler-408 is one of the 33 planet-hosting {it Kepler} stars for which asteroseismology has been used to investigate the orientation of the stellar rotation axis relative to the planetary orbital plane. The transiting hot Earth, Kepler-408b, has an orbital period of 2.5 days and a radius of $0.86$~$R_oplus$, making it much smaller than the planets for which spin-orbit alignment has been studied using the Rossiter-McLaughlin effect. Because conflicting asteroseismic results have been reported in the literature, we undertake a thorough re-appraisal of this system and perform numerous checks for consistency and robustness. We find that the conflicting results are due to the different models for the low-frequency noise in the power spectrum. A careful treatment of the background noise resolves these conflicts, and shows that the stellar inclination is $is=42^{+5}_{-4}$ degrees. Kepler-408b is, by far, the smallest planet known to have a significantly misaligned orbit.
We present the discovery and validation of a three-planet system orbiting the nearby (31.1 pc) M2 dwarf star TOI-700 (TIC 150428135). TOI-700 lies in the TESS continuous viewing zone in the Southern Ecliptic Hemisphere; observations spanning 11 secto
The future of exoplanet science is bright, as TESS once again demonstrates with the discovery of its longest-period confirmed planet to date. We hereby present HD 21749b (TOI 186.01), a sub-Neptune in a 36-day orbit around a bright (V = 8.1) nearby (
We discuss the discovery and characterization of the circumbinary planet Kepler-38b. The stellar binary is single-lined, with a period of 18.8 days, and consists of a moderately evolved main-sequence star (M_A = 0.949 +/- 0.059 solar masses and R_A =
Since the discovery of the first extrasolar giant planets around Sun-like stars, evolving observational capabilities have brought us closer to the detection of true Earth analogues. The size of an exoplanet can be determined when it periodically pass
Kepler-730 is a planetary system hosting a statistically validated hot Jupiter in a 6.49-day orbit and an additional transiting candidate in a 2.85-day orbit. We use spectroscopic radial velocities from the APOGEE-2N instrument, Robo-AO contrast curv