ﻻ يوجد ملخص باللغة العربية
Since the discovery of the first extrasolar giant planets around Sun-like stars, evolving observational capabilities have brought us closer to the detection of true Earth analogues. The size of an exoplanet can be determined when it periodically passes in front of (transits) its parent star, causing a decrease in starlight proportional to its radius. The smallest exoplanet hitherto discovered has a radius 1.42 times that of the Earths radius (R Earth), and hence has 2.9 times its volume. Here we report the discovery of two planets, one Earth-sized (1.03R Earth) and the other smaller than the Earth (0.87R Earth), orbiting the star Kepler-20, which is already known to host three other, larger, transiting planets. The gravitational pull of the new planets on the parent star is too small to measure with current instrumentation. We apply a statistical method to show that the likelihood of the planetary interpretation of the transit signals is more than three orders of magnitude larger than that of the alternative hypothesis that the signals result from an eclipsing binary star. Theoretical considerations imply that these planets are rocky, with a composition of iron and silicate. The outer planet could have developed a thick water vapour atmosphere.
Discovering other worlds the size of our own has been a long-held dream of astronomers. The transiting planets Kepler-20e and Kepler-20f, which belong to a multi-planet system, hold a very special place among the many groundbreaking discoveries of th
Seven temperate Earth-sized exoplanets readily amenable for atmospheric studies transit the nearby ultracool dwarf star TRAPPIST-1 (refs 1,2). Their atmospheric regime is unknown and could range from extended primordial hydrogen-dominated to depleted
The Kepler-1647 is a binary system with two Sun-type stars (approximately 1.22 and 0.97 Solar mass). It has the most massive circumbinary planet (1.52 Jupiter mass) with the longest orbital period (1,107.6 days) detected by the Kepler probe and is lo
We present two new planetary systems found around cool dwarf stars with data from the K2 mission. The first system was found in K2-239 (EPIC 248545986), char- acterized in this work as M3.0V and observed in the 14th campaign of K2. It consists of thr
Kepler-408 is one of the 33 planet-hosting {it Kepler} stars for which asteroseismology has been used to investigate the orientation of the stellar rotation axis relative to the planetary orbital plane. The transiting hot Earth, Kepler-408b, has an o