ترغب بنشر مسار تعليمي؟ اضغط هنا

PIPPS: Flexible Model-Based Policy Search Robust to the Curse of Chaos

158   0   0.0 ( 0 )
 نشر من قبل Paavo Parmas
 تاريخ النشر 2019
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

Previously, the exploding gradient problem has been explained to be central in deep learning and model-based reinforcement learning, because it causes numerical issues and instability in optimization. Our experiments in model-based reinforcement learning imply that the problem is not just a numerical issue, but it may be caused by a fundamental chaos-like nature of long chains of nonlinear computations. Not only do the magnitudes of the gradients become large, the direction of the gradients becomes essentially random. We show that reparameterization gradients suffer from the problem, while likelihood ratio gradients are robust. Using our insights, we develop a model-based policy search framework, Probabilistic Inference for Particle-Based Policy Search (PIPPS), which is easily extensible, and allows for almost arbitrary models and policies, while simultaneously matching the performance of previous data-efficient learning algorithms. Finally, we invent the total propagation algorithm, which efficiently computes a union over all pathwise derivative depths during a single backwards pass, automatically giving greater weight to estimators with lower variance, sometimes improving over reparameterization gradients by $10^6$ times.

قيم البحث

اقرأ أيضاً

Robust Policy Search is the problem of learning policies that do not degrade in performance when subject to unseen environment model parameters. It is particularly relevant for transferring policies learned in a simulation environment to the real wor ld. Several existing approaches involve sampling large batches of trajectories which reflect the differences in various possible environments, and then selecting some subset of these to learn robust policies, such as the ones that result in the worst performance. We propose an active learning based framework, EffAcTS, to selectively choose model parameters for this purpose so as to collect only as much data as necessary to select such a subset. We apply this framework to an existing method, namely EPOpt, and experimentally validate the gains in sample efficiency and the performance of our approach on standard continuous control tasks. We also present a Multi-Task Learning perspective to the problem of Robust Policy Search, and draw connections from our proposed framework to existing work on Multi-Task Learning.
Traditional model-based reinforcement learning approaches learn a model of the environment dynamics without explicitly considering how it will be used by the agent. In the presence of misspecified model classes, this can lead to poor estimates, as so me relevant available information is ignored. In this paper, we introduce a novel model-based policy search approach that exploits the knowledge of the current agent policy to learn an approximate transition model, focusing on the portions of the environment that are most relevant for policy improvement. We leverage a weighting scheme, derived from the minimization of the error on the model-based policy gradient estimator, in order to define a suitable objective function that is optimized for learning the approximate transition model. Then, we integrate this procedure into a batch policy improvement algorithm, named Gradient-Aware Model-based Policy Search (GAMPS), which iteratively learns a transition model and uses it, together with the collected trajectories, to compute the new policy parameters. Finally, we empirically validate GAMPS on benchmark domains analyzing and discussing its properties.
Model-based algorithms, which learn a dynamics model from logged experience and perform some sort of pessimistic planning under the learned model, have emerged as a promising paradigm for offline reinforcement learning (offline RL). However, practica l variants of such model-based algorithms rely on explicit uncertainty quantification for incorporating pessimism. Uncertainty estimation with complex models, such as deep neural networks, can be difficult and unreliable. We overcome this limitation by developing a new model-based offline RL algorithm, COMBO, that regularizes the value function on out-of-support state-action tuples generated via rollouts under the learned model. This results in a conservative estimate of the value function for out-of-support state-action tuples, without requiring explicit uncertainty estimation. We theoretically show that our method optimizes a lower bound on the true policy value, that this bound is tighter than that of prior methods, and our approach satisfies a policy improvement guarantee in the offline setting. Through experiments, we find that COMBO consistently performs as well or better as compared to prior offline model-free and model-based methods on widely studied offline RL benchmarks, including image-based tasks.
We consider the problem of offline reinforcement learning with model-based control, whose goal is to learn a dynamics model from the experience replay and obtain a pessimism-oriented agent under the learned model. Current model-based constraint inclu des explicit uncertainty penalty and implicit conservative regularization that pushes Q-values of out-of-distribution state-action pairs down and the in-distribution up. While the uncertainty estimation, on which the former relies on, can be loosely calibrated for complex dynamics, the latter performs slightly better. To extend the basic idea of regularization without uncertainty quantification, we propose distributionally robust offline model-based policy optimization (DROMO), which leverages the ideas in distributionally robust optimization to penalize a broader range of out-of-distribution state-action pairs beyond the standard empirical out-of-distribution Q-value minimization. We theoretically show that our method optimizes a lower bound on the ground-truth policy evaluation, and it can be incorporated into any existing policy gradient algorithms. We also analyze the theoretical properties of DROMOs linear and non-linear instantiations.
Despite of the recent progress in agents that learn through interaction, there are several challenges in terms of sample efficiency and generalization across unseen behaviors during training. To mitigate these problems, we propose and apply a first-o rder Meta-Learning algorithm called Bottom-Up Meta-Policy Search (BUMPS), which works with two-phase optimization procedure: firstly, in a meta-training phase, it distills few expert policies to create a meta-policy capable of generalizing knowledge to unseen tasks during training; secondly, it applies a fast adaptation strategy named Policy Filtering, which evaluates few policies sampled from the meta-policy distribution and selects which best solves the task. We conducted all experiments in the RoboCup 3D Soccer Simulation domain, in the context of kick motion learning. We show that, given our experimental setup, BUMPS works in scenarios where simple multi-task Reinforcement Learning does not. Finally, we performed experiments in a way to evaluate each component of the algorithm.

الأسئلة المقترحة

التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا