ترغب بنشر مسار تعليمي؟ اضغط هنا

COMBO: Conservative Offline Model-Based Policy Optimization

133   0   0.0 ( 0 )
 نشر من قبل Tianhe Yu
 تاريخ النشر 2021
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

Model-based algorithms, which learn a dynamics model from logged experience and perform some sort of pessimistic planning under the learned model, have emerged as a promising paradigm for offline reinforcement learning (offline RL). However, practical variants of such model-based algorithms rely on explicit uncertainty quantification for incorporating pessimism. Uncertainty estimation with complex models, such as deep neural networks, can be difficult and unreliable. We overcome this limitation by developing a new model-based offline RL algorithm, COMBO, that regularizes the value function on out-of-support state-action tuples generated via rollouts under the learned model. This results in a conservative estimate of the value function for out-of-support state-action tuples, without requiring explicit uncertainty estimation. We theoretically show that our method optimizes a lower bound on the true policy value, that this bound is tighter than that of prior methods, and our approach satisfies a policy improvement guarantee in the offline setting. Through experiments, we find that COMBO consistently performs as well or better as compared to prior offline model-free and model-based methods on widely studied offline RL benchmarks, including image-based tasks.



قيم البحث

اقرأ أيضاً

Offline reinforcement learning (RL) refers to the problem of learning policies entirely from a large batch of previously collected data. This problem setting offers the promise of utilizing such datasets to acquire policies without any costly or dang erous active exploration. However, it is also challenging, due to the distributional shift between the offline training data and those states visited by the learned policy. Despite significant recent progress, the most successful prior methods are model-free and constrain the policy to the support of data, precluding generalization to unseen states. In this paper, we first observe that an existing model-based RL algorithm already produces significant gains in the offline setting compared to model-free approaches. However, standard model-based RL methods, designed for the online setting, do not provide an explicit mechanism to avoid the offline settings distributional shift issue. Instead, we propose to modify the existing model-based RL methods by applying them with rewards artificially penalized by the uncertainty of the dynamics. We theoretically show that the algorithm maximizes a lower bound of the policys return under the true MDP. We also characterize the trade-off between the gain and risk of leaving the support of the batch data. Our algorithm, Model-based Offline Policy Optimization (MOPO), outperforms standard model-based RL algorithms and prior state-of-the-art model-free offline RL algorithms on existing offline RL benchmarks and two challenging continuous control tasks that require generalizing from data collected for a different task. The code is available at https://github.com/tianheyu927/mopo.
We consider the problem of offline reinforcement learning with model-based control, whose goal is to learn a dynamics model from the experience replay and obtain a pessimism-oriented agent under the learned model. Current model-based constraint inclu des explicit uncertainty penalty and implicit conservative regularization that pushes Q-values of out-of-distribution state-action pairs down and the in-distribution up. While the uncertainty estimation, on which the former relies on, can be loosely calibrated for complex dynamics, the latter performs slightly better. To extend the basic idea of regularization without uncertainty quantification, we propose distributionally robust offline model-based policy optimization (DROMO), which leverages the ideas in distributionally robust optimization to penalize a broader range of out-of-distribution state-action pairs beyond the standard empirical out-of-distribution Q-value minimization. We theoretically show that our method optimizes a lower bound on the ground-truth policy evaluation, and it can be incorporated into any existing policy gradient algorithms. We also analyze the theoretical properties of DROMOs linear and non-linear instantiations.
Computational design problems arise in a number of settings, from synthetic biology to computer architectures. In this paper, we aim to solve data-driven model-based optimization (MBO) problems, where the goal is to find a design input that maximizes an unknown objective function provided access to only a static dataset of prior experiments. Such data-driven optimization procedures are the only practical methods in many real-world domains where active data collection is expensive (e.g., when optimizing over proteins) or dangerous (e.g., when optimizing over aircraft designs). Typical methods for MBO that optimize the design against a learned model suffer from distributional shift: it is easy to find a design that fools the model into predicting a high value. To overcome this, we propose conservative objective models (COMs), a method that learns a model of the objective function that lower bounds the actual value of the ground-truth objective on out-of-distribution inputs, and uses it for optimization. Structurally, COMs resemble adversarial training methods used to overcome adversarial examples. COMs are simple to implement and outperform a number of existing methods on a wide range of MBO problems, including optimizing protein sequences, robot morphologies, neural network weights, and superconducting materials.
Offline learning is a key part of making reinforcement learning (RL) useable in real systems. Offline RL looks at scenarios where there is data from a systems operation, but no direct access to the system when learning a policy. Recent work on traini ng RL policies from offline data has shown results both with model-free policies learned directly from the data, or with planning on top of learnt models of the data. Model-free policies tend to be more performant, but are more opaque, harder to command externally, and less easy to integrate into larger systems. We propose an offline learner that generates a model that can be used to control the system directly through planning. This allows us to have easily controllable policies directly from data, without ever interacting with the system. We show the performance of our algorithm, Model-Based Offline Planning (MBOP) on a series of robotics-inspired tasks, and demonstrate its ability leverage planning to respect environmental constraints. We are able to find near-optimal polices for certain simulated systems from as little as 50 seconds of real-time system interaction, and create zero-shot goal-conditioned policies on a series of environments. An accompanying video can be found here: https://youtu.be/nxGGHdZOFts
Model-free reinforcement learning (RL) methods are succeeding in a growing number of tasks, aided by recent advances in deep learning. However, they tend to suffer from high sample complexity, which hinders their use in real-world domains. Alternativ ely, model-based reinforcement learning promises to reduce sample complexity, but tends to require careful tuning and to date have succeeded mainly in restrictive domains where simple models are sufficient for learning. In this paper, we analyze the behavior of vanilla model-based reinforcement learning methods when deep neural networks are used to learn both the model and the policy, and show that the learned policy tends to exploit regions where insufficient data is available for the model to be learned, causing instability in training. To overcome this issue, we propose to use an ensemble of models to maintain the model uncertainty and regularize the learning process. We further show that the use of likelihood ratio derivatives yields much more stable learning than backpropagation through time. Altogether, our approach Model-Ensemble Trust-Region Policy Optimization (ME-TRPO) significantly reduces the sample complexity compared to model-free deep RL methods on challenging continuous control benchmark tasks.

الأسئلة المقترحة

التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا