ترغب بنشر مسار تعليمي؟ اضغط هنا

Monolithic integration of broadband optical isolators for polarization-diverse silicon photonics

164   0   0.0 ( 0 )
 نشر من قبل Lei Bi
 تاريخ النشر 2019
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Integrated optical isolators have been a longstanding challenge for photonic integrated circuits (PIC). An ideal integrated optical isolator for PIC should be made by a monolithic process, have a small footprint, exhibit broadband and polarization-diverse operation, and be compatible with multiple materials platforms. Despite significant progress, the optical isolators reported so far do not meet all these requirements. In this article we present monolithically integrated broadband magneto-optical isolators on silicon and silicon nitride (SiN) platforms operating for both TE and TM modes with record high performances, fulfilling all the essential characteristics for PIC applications. In particular, we demonstrate fully-TE broadband isolators by depositing high quality magneto-optical garnet thin films on the sidewalls of Si and SiN waveguides, a critical result for applications in TE-polarized on-chip lasers and amplifiers. This work demonstrates monolithic integration of high performance optical isolators on chip for polarization-diverse silicon photonic systems, enabling new pathways to impart nonreciprocal photonic functionality to a variety of integrated photonic devices.

قيم البحث

اقرأ أيضاً

339 - Wei Yan , Yucong Yang (1 2020
Optical isolators and circulators are indispensable for photonic integrated circuits (PICs). Despite of significant progress in silicon-on-insulator (SOI) platforms, integrated optical isolators and circulators have been rarely reported on silicon ni tride (SiN) platforms. In this paper, we report monolithic integration of magneto-optical (MO) isolators on SiN platforms with record high performances based on standard silicon photonics foundry process and magneto-optical thin film deposition. We successfully grow high quality MO garnet thin films on SiN with large Faraday rotation up to -5900 deg/cm. We show a superior magneto-optical figure of merit (FoM) of MO/SiN waveguides compared to that of MO/SOI in an optimized device design. We demonstrate TM/TE mode broadband and narrow band optical isolators and circulators on SiN with high isolation ratio, low cross talk and low insertion loss. In particular, we observe 1 dB insertion loss and 28 dB isolation ratio in a SiN racetrack resonator-based isolator at 1570.2 nm wavelength. The low thermo-optic coefficient of SiN also ensures excellent temperature stability of the device. Our work paves the way for integration of high performance nonreciprocal photonic devices on SiN platforms.
The goal of integrated quantum photonics is to combine components for the generation, manipulation, and detection of non-classical light in a phase stable and efficient platform. Solid-state quantum emitters have recently reached outstanding performa nce as single photon sources. In parallel, photonic integrated circuits have been advanced to the point that thousands of components can be controlled on a chip with high efficiency and phase stability. Consequently, researchers are now beginning to combine these leading quantum emitters and photonic integrated circuit platforms to realize the best properties of each technology. In this article, we review recent advances in integrated quantum photonics based on such hybrid systems. Although hybrid integration solves many limitations of individual platforms, it also introduces new challenges that arise from interfacing different materials. We review various issues in solid-state quantum emitters and photonic integrated circuits, the hybrid integration techniques that bridge these two systems, and methods for chip-based manipulation of photons and emitters. Finally, we discuss the remaining challenges and future prospects of on-chip quantum photonics with integrated quantum emitters.
(Si)GeSn semiconductors are finally coming of age after a long gestation period. The demonstration of device quality epi-layers and quantum-engineered heterostructures has meant that tunable all-group IV Si-integrated infrared photonics is now a real possibility. Notwithstanding the recent exciting developments in (Si)GeSn materials and devices, this family of semiconductors is still facing serious limitations that need to be addressed to enable reliable and scalable applications. The main outstanding challenges include the difficulty to grow high crystalline quality layers and heterostructures at the desired Sn content and lattice strain, preserve the material integrity during growth and throughout device processing steps, and control doping and defect density. Other challenges are related to the lack of optimized device designs and predictive theoretical models to evaluate and simulate the fundamental properties and performance of (Si)GeSn layers and heterostructures. This Perspective highlights key strategies to circumvent these hurdles and bring this material system to maturity to create far-reaching new opportunities for Si-compatible infrared photodetectors, sensors, and emitters for applications in free-space communication, infrared harvesting, biological and chemical sensing, and thermal imaging.
179 - Nathan Dostart 2018
We propose and investigate the performance of integrated photonic isolators based on non-reciprocal mode conversion facilitated by unidirectional, traveling acoustic waves. A triply-guided waveguide system on-chip, comprising two optical modes and an electrically-driven acoustic mode, facilitates the non-reciprocal mode conversion and is combined with modal filters to create the isolator. The co-guided and co-traveling arrangement enables isolation with no additional optical loss, without magnetic-optic materials, and low power consumption. The approach is theoretically evaluated and simulations predict over 20 dB of isolation and 2.6 dB of insertion loss with 370 GHz optical bandwidth and a 1 cm device length. The isolator utilizes only 1 mW of electrical drive power, an improvement of 1-3 orders of magnitude over the state-of-the-art. The electronic driving and lack of magneto-optic materials suggest the potential for straightforward integration with the drive circuitry, possibly in monolithic CMOS technology, enabling a fully contained `black box optical isolator with two optical ports and DC electrical power.
Integrated-photonics microchips now enable a range of advanced functionalities for high-coherence applications such as data transmission, highly optimized physical sensors, and harnessing quantum states, but with cost, efficiency, and portability muc h beyond tabletop experiments. Through high-volume semiconductor processing built around advanced materials there exists an opportunity for integrated devices to impact applications cutting across disciplines of basic science and technology. Here we show how to synthesize the absolute frequency of a lightwave signal, using integrated photonics to implement lasers, system interconnects, and nonlinear frequency comb generation. The laser frequency output of our synthesizer is programmed by a microwave clock across 4 THz near 1550 nm with 1 Hz resolution and traceability to the SI second. This is accomplished with a heterogeneously integrated III/V-Si tunable laser, which is guided by dual dissipative-Kerr-soliton frequency combs fabricated on silicon chips. Through out-of-loop measurements of the phase-coherent, microwave-to-optical link, we verify that the fractional-frequency instability of the integrated photonics synthesizer matches the $7.0*10^{-13}$ reference-clock instability for a 1 second acquisition, and constrain any synthesis error to $7.7*10^{-15}$ while stepping the synthesizer across the telecommunication C band. Any application of an optical frequency source would be enabled by the precision optical synthesis presented here. Building on the ubiquitous capability in the microwave domain, our results demonstrate a first path to synthesis with integrated photonics, leveraging low-cost, low-power, and compact features that will be critical for its widespread use.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا