ﻻ يوجد ملخص باللغة العربية
Optical isolators and circulators are indispensable for photonic integrated circuits (PICs). Despite of significant progress in silicon-on-insulator (SOI) platforms, integrated optical isolators and circulators have been rarely reported on silicon nitride (SiN) platforms. In this paper, we report monolithic integration of magneto-optical (MO) isolators on SiN platforms with record high performances based on standard silicon photonics foundry process and magneto-optical thin film deposition. We successfully grow high quality MO garnet thin films on SiN with large Faraday rotation up to -5900 deg/cm. We show a superior magneto-optical figure of merit (FoM) of MO/SiN waveguides compared to that of MO/SOI in an optimized device design. We demonstrate TM/TE mode broadband and narrow band optical isolators and circulators on SiN with high isolation ratio, low cross talk and low insertion loss. In particular, we observe 1 dB insertion loss and 28 dB isolation ratio in a SiN racetrack resonator-based isolator at 1570.2 nm wavelength. The low thermo-optic coefficient of SiN also ensures excellent temperature stability of the device. Our work paves the way for integration of high performance nonreciprocal photonic devices on SiN platforms.
We propose and investigate the performance of integrated photonic isolators based on non-reciprocal mode conversion facilitated by unidirectional, traveling acoustic waves. A triply-guided waveguide system on-chip, comprising two optical modes and an
We present waveguide integrated high-speed Si photodetector integrated with silicon nitride (SiN) waveguide on SOI platform for short reach data communication in 850 nm wavelength band. We demonstrate a waveguide couple Si pin photodetector responsiv
Integrated optical isolators have been a longstanding challenge for photonic integrated circuits (PIC). An ideal integrated optical isolator for PIC should be made by a monolithic process, have a small footprint, exhibit broadband and polarization-di
A fast silicon-graphene hybrid plasmonic waveguide photodetectors beyond 1.55 {mu}m is proposed and realized by introducing an ultra-thin wide silicon-on-insulator ridge core region with a narrow metal cap. With this novel design, the light absorptio
Cavity-free optical nonreciprocity components, which have an inherent strong asymmetric interaction between the forward- and backward-propagation direction of the probe field, are key to produce such as optical isolators and circulators. According to