ﻻ يوجد ملخص باللغة العربية
Self-testing refers to a method with which a classical user can certify the state and measurements of quantum systems in a device-independent way. Especially, the self-testing of entangled states is of great importance in quantum information process. A comprehensible example is that violating the CHSH inequality maximally necessarily implies the bipartite shares a singlet. One essential question in self-testing is that, when one observes a non-maximum violation, how close is the tested state to the target state (which maximally violates certain Bell inequality)? The answer to this question describes the robustness of the used self-testing criterion, which is highly important in a practical sense. Recently, J. Kaniewski predicts two analytic self-testing bounds for bipartite and tripartite systems. In this work, we experimentally investigate these two bounds with high quality two-qubit and three-qubit entanglement sources. The results show that these bounds are valid for various of entangled states we prepared, and thus, we implement robust self-testing processes which improve the previous results significantly.
We derive Bohms trajectories from Bells beables for arbitrary bipartite systems composed by dissipative noninteracting harmonic oscillators at finite temperature. As an application of our result, we calculate the Bohmian trajectories of particles des
It is well-known that observing nonlocal correlations allows us to draw conclusions about the quantum systems under consideration. In some cases this yields a characterisation which is essentially complete, a phenomenon known as self-testing. Self-te
Bell inequalities constitute a key tool in quantum information theory: they not only allow one to reveal nonlocality in composite quantum systems, but, more importantly, they can be used to certify relevant properties thereof. We provide a very simpl
We prove that the bipartite entangled state of rank three is distillable. So there is no rank three bipartite bound entangled state. By using this fact, We present some families of rank four states that are distillable. We also analyze the relation between the low rank state and the Werner state.
Previous theoretical works showed that all pure two-qubit entangled states can generate one bit of local randomness and can be self-tested through the violation of proper Bell inequalities. We report an experiment in which nearly pure partially entan