ترغب بنشر مسار تعليمي؟ اضغط هنا

Generating Dialogue Agents via Automated Planning

144   0   0.0 ( 0 )
 نشر من قبل Adi Botea
 تاريخ النشر 2019
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

Dialogue systems have many applications such as customer support or question answering. Typically they have been limited to shallow single turn interactions. However more advanced applications such as career coaching or planning a trip require a much more complex multi-turn dialogue. Current limitations of conversational systems have made it difficult to support applications that require personalization, customization and context dependent interactions. We tackle this challenging problem by using domain-independent AI planning to automatically create dialogue plans, customized to guide a dialogue towards achieving a given goal. The input includes a library of atomic dialogue actions, an initial state of the dialogue, and a goal. Dialogue plans are plugged into a dialogue system capable to orchestrate their execution. Use cases demonstrate the viability of the approach. Our work on dialogue planning has been integrated into a product, and it is in the process of being deployed into another.

قيم البحث

اقرأ أيضاً

We present an automated evaluation method to measure fluidity in conversational dialogue systems. The method combines various state of the art Natural Language tools into a classifier, and human ratings on these dialogues to train an automated judgme nt model. Our experiments show that the results are an improvement on existing metrics for measuring fluidity.
This paper describes an implementation of a bot assistant in Minecraft, and the tools and platform allowing players to interact with the bot and to record those interactions. The purpose of building such an assistant is to facilitate the study of age nts that can complete tasks specified by dialogue, and eventually, to learn from dialogue interactions.
106 - Khuong Tran 2021
Penetration testing the organised attack of a computer system in order to test existing defences has been used extensively to evaluate network security. This is a time consuming process and requires in-depth knowledge for the establishment of a strat egy that resembles a real cyber-attack. This paper presents a novel deep reinforcement learning architecture with hierarchically structured agents called HA-DRL, which employs an algebraic action decomposition strategy to address the large discrete action space of an autonomous penetration testing simulator where the number of actions is exponentially increased with the complexity of the designed cybersecurity network. The proposed architecture is shown to find the optimal attacking policy faster and more stably than a conventional deep Q-learning agent which is commonly used as a method to apply artificial intelligence in automatic penetration testing.
Conventional approaches to personalized dialogue generation typically require a large corpus, as well as predefined persona information. However, in a real-world setting, neither a large corpus of training data nor persona information are readily ava ilable. To address these practical limitations, we propose a novel multi-task meta-learning approach which involves training a model to adapt to new personas without relying on a large corpus, or on any predefined persona information. Instead, the model is tasked with generating personalized responses based on only the dialogue context. Unlike prior work, our approach leverages on the provided persona information only during training via the introduction of an auxiliary persona reconstruction task. In this paper, we introduce 2 frameworks that adopt the proposed multi-task meta-learning approach: the Multi-Task Meta-Learning (MTML) framework, and the Alternating Multi-Task Meta-Learning (AMTML) framework. Experimental results show that utilizing MTML and AMTML results in dialogue responses with greater persona consistency.
In this paper, we consider online planning in partially observable domains. Solving the corresponding POMDP problem is a very challenging task, particularly in an online setting. Our key contribution is a novel algorithmic approach, Simplified Inform ation Theoretic Belief Space Planning (SITH-BSP), which aims to speed-up POMDP planning considering belief-dependent rewards, without compromising on the solutions accuracy. We do so by mathematically relating the simplified elements of the problem to the corresponding counterparts of the original problem. Specifically, we focus on belief simplification and use it to formulate bounds on the corresponding original belief-dependent rewards. These bounds in turn are used to perform branch pruning over the belief tree, in the process of calculating the optimal policy. We further introduce the notion of adaptive simplification, while re-using calculations between different simplification levels and exploit it to prune, at each level in the belief tree, all branches but one. Therefore, our approach is guaranteed to find the optimal solution of the original problem but with substantial speedup. As a second key contribution, we derive novel analytical bounds for differential entropy, considering a sampling-based belief representation, which we believe are of interest on their own. We validate our approach in simulation using these bounds and where simplification corresponds to reducing the number of samples, exhibiting a significant computational speedup while yielding the optimal solution.

الأسئلة المقترحة

التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا