ترغب بنشر مسار تعليمي؟ اضغط هنا

Critical initialisation in continuous approximations of binary neural networks

65   0   0.0 ( 0 )
 نشر من قبل George Stamatescu
 تاريخ النشر 2019
والبحث باللغة English




اسأل ChatGPT حول البحث

The training of stochastic neural network models with binary ($pm1$) weights and activations via continuous surrogate networks is investigated. We derive new surrogates using a novel derivation based on writing the stochastic neural network as a Markov chain. This derivation also encompasses existing variants of the surrogates presented in the literature. Following this, we theoretically study the surrogates at initialisation. We derive, using mean field theory, a set of scalar equations describing how input signals propagate through the randomly initialised networks. The equations reveal whether so-called critical initialisations exist for each surrogate network, where the network can be trained to arbitrary depth. Moreover, we predict theoretically and confirm numerically, that common weight initialisation schemes used in standard continuous networks, when applied to the mean values of the stochastic binary weights, yield poor training performance. This study shows that, contrary to common intuition, the means of the stochastic binary weights should be initialised close to $pm 1$, for deeper networks to be trainable.



قيم البحث

اقرأ أيضاً

This paper proposes a new family of algorithms for training neural networks (NNs). These are based on recent developments in the field of non-convex optimization, going under the general name of successive convex approximation (SCA) techniques. The b asic idea is to iteratively replace the original (non-convex, highly dimensional) learning problem with a sequence of (strongly convex) approximations, which are both accurate and simple to optimize. Differently from similar ideas (e.g., quasi-Newton algorithms), the approximations can be constructed using only first-order information of the neural network function, in a stochastic fashion, while exploiting the overall structure of the learning problem for a faster convergence. We discuss several use cases, based on different choices for the loss function (e.g., squared loss and cross-entropy loss), and for the regularization of the NNs weights. We experiment on several medium-sized benchmark problems, and on a large-scale dataset involving simulated physical data. The results show how the algorithm outperforms state-of-the-art techniques, providing faster convergence to a better minimum. Additionally, we show how the algorithm can be easily parallelized over multiple computational units without hindering its performance. In particular, each computational unit can optimize a tailored surrogate function defined on a randomly assigned subset of the input variables, whose dimension can be selected depending entirely on the available computational power.
Existing methods for estimating uncertainty in deep learning tend to require multiple forward passes, making them unsuitable for applications where computational resources are limited. To solve this, we perform probabilistic reasoning over the depth of neural networks. Different depths correspond to subnetworks which share weights and whose predictions are combined via marginalisation, yielding model uncertainty. By exploiting the sequential structure of feed-forward networks, we are able to both evaluate our training objective and make predictions with a single forward pass. We validate our approach on real-world regression and image classification tasks. Our approach provides uncertainty calibration, robustness to dataset shift, and accuracies competitive with more computationally expensive baselines.
The discovery of causal mechanisms from time series data is a key problem in fields working with complex systems. Most identifiability results and learning algorithms assume the underlying dynamics to be discrete in time. Comparatively few, in contra st, explicitly define causal associations in infinitesimal intervals of time, independently of the scale of observation and of the regularity of sampling. In this paper, we consider causal discovery in continuous-time for the study of dynamical systems. We prove that for vector fields parameterized in a large class of neural networks, adaptive regularization schemes consistently recover causal graphs in systems of ordinary differential equations (ODEs). Using this insight, we propose a causal discovery algorithm based on penalized Neural ODEs that we show to be applicable to the general setting of irregularly-sampled multivariate time series and to strongly outperform the state of the art.
Sorting input objects is an important step in many machine learning pipelines. However, the sorting operator is non-differentiable with respect to its inputs, which prohibits end-to-end gradient-based optimization. In this work, we propose NeuralSort , a general-purpose continuous relaxation of the output of the sorting operator from permutation matrices to the set of unimodal row-stochastic matrices, where every row sums to one and has a distinct arg max. This relaxation permits straight-through optimization of any computational graph involve a sorting operation. Further, we use this relaxation to enable gradient-based stochastic optimization over the combinatorially large space of permutations by deriving a reparameterized gradient estimator for the Plackett-Luce family of distributions over permutations. We demonstrate the usefulness of our framework on three tasks that require learning semantic orderings of high-dimensional objects, including a fully differentiable, parameterized extension of the k-nearest neighbors algorithm.
Neural Tangents is a library designed to enable research into infinite-width neural networks. It provides a high-level API for specifying complex and hierarchical neural network architectures. These networks can then be trained and evaluated either a t finite-width as usual or in their infinite-width limit. Infinite-width networks can be trained analytically using exact Bayesian inference or using gradient descent via the Neural Tangent Kernel. Additionally, Neural Tangents provides tools to study gradient descent training dynamics of wide but finite networks in either function space or weight space. The entire library runs out-of-the-box on CPU, GPU, or TPU. All computations can be automatically distributed over multiple accelerators with near-linear scaling in the number of devices. Neural Tangents is available at www.github.com/google/neural-tangents. We also provide an accompanying interactive Colab notebook.

الأسئلة المقترحة

التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا