ترغب بنشر مسار تعليمي؟ اضغط هنا

Neural Tangents: Fast and Easy Infinite Neural Networks in Python

227   0   0.0 ( 0 )
 نشر من قبل Samuel Schoenholz
 تاريخ النشر 2019
والبحث باللغة English




اسأل ChatGPT حول البحث

Neural Tangents is a library designed to enable research into infinite-width neural networks. It provides a high-level API for specifying complex and hierarchical neural network architectures. These networks can then be trained and evaluated either at finite-width as usual or in their infinite-width limit. Infinite-width networks can be trained analytically using exact Bayesian inference or using gradient descent via the Neural Tangent Kernel. Additionally, Neural Tangents provides tools to study gradient descent training dynamics of wide but finite networks in either function space or weight space. The entire library runs out-of-the-box on CPU, GPU, or TPU. All computations can be automatically distributed over multiple accelerators with near-linear scaling in the number of devices. Neural Tangents is available at www.github.com/google/neural-tangents. We also provide an accompanying interactive Colab notebook.



قيم البحث

اقرأ أيضاً

201 - Laurence Aitchison 2019
Recent work has argued that neural networks can be understood theoretically by taking the number of channels to infinity, at which point the outputs become Gaussian process (GP) distributed. However, we note that infinite Bayesian neural networks lac k a key facet of the behaviour of real neural networks: the fixed kernel, determined only by network hyperparameters, implies that they cannot do any form of representation learning. The lack of representation or equivalently kernel learning leads to less flexibility and hence worse performance, giving a potential explanation for the inferior performance of infinite networks observed in the literature (e.g. Novak et al. 2019). We give analytic results characterising the prior over representations and representation learning in finite deep linear networks. We show empirically that the representations in SOTA architectures such as ResNets trained with SGD are much closer to those suggested by our deep linear results than by the corresponding infinite network. This motivates the introduction of a new class of network: infinite networks with bottlenecks, which inherit the theoretical tractability of infinite networks while at the same time allowing representation learning.
Natural gradient descent has proven effective at mitigating the effects of pathological curvature in neural network optimization, but little is known theoretically about its convergence properties, especially for emph{nonlinear} networks. In this wor k, we analyze for the first time the speed of convergence of natural gradient descent on nonlinear neural networks with squared-error loss. We identify two conditions which guarantee efficient convergence from random initializations: (1) the Jacobian matrix (of networks output for all training cases with respect to the parameters) has full row rank, and (2) the Jacobian matrix is stable for small perturbations around the initialization. For two-layer ReLU neural networks, we prove that these two conditions do in fact hold throughout the training, under the assumptions of nondegenerate inputs and overparameterization. We further extend our analysis to more general loss functions. Lastly, we show that K-FAC, an approximate natural gradient descent method, also converges to global minima under the same assumptions, and we give a bound on the rate of this convergence.
Discovering the underlying behavior of complex systems is an important topic in many science and engineering disciplines. In this paper, we propose a novel neural network framework, finite difference neural networks (FDNet), to learn partial differen tial equations from data. Specifically, our proposed finite difference inspired network is designed to learn the underlying governing partial differential equations from trajectory data, and to iteratively estimate the future dynamical behavior using only a few trainable parameters. We illustrate the performance (predictive power) of our framework on the heat equation, with and without noise and/or forcing, and compare our results to the Forward Euler method. Moreover, we show the advantages of using a Hessian-Free Trust Region method to train the network.
Modern deep learning models have achieved great success in predictive accuracy for many data modalities. However, their application to many real-world tasks is restricted by poor uncertainty estimates, such as overconfidence on out-of-distribution (O OD) data and ungraceful failing under distributional shift. Previous benchmarks have found that ensembles of neural networks (NNs) are typically the best calibrated models on OOD data. Inspired by this, we leverage recent theoretical advances that characterize the function-space prior of an ensemble of infinitely-wide NNs as a Gaussian process, termed the neural network Gaussian process (NNGP). We use the NNGP with a softmax link function to build a probabilistic model for multi-class classification and marginalize over the latent Gaussian outputs to sample from the posterior. This gives us a better understanding of the implicit prior NNs place on function space and allows a direct comparison of the calibration of the NNGP and its finite-width analogue. We also examine the calibration of previous approaches to classification with the NNGP, which treat classification problems as regression to the one-hot labels. In this case the Bayesian posterior is exact, and we compare several heuristics to generate a categorical distribution over classes. We find these methods are well calibrated under distributional shift. Finally, we consider an infinite-width final layer in conjunction with a pre-trained embedding. This replicates the important practical use case of transfer learning and allows scaling to significantly larger datasets. As well as achieving competitive predictive accuracy, this approach is better calibrated than its finite width analogue.
Existing methods for estimating uncertainty in deep learning tend to require multiple forward passes, making them unsuitable for applications where computational resources are limited. To solve this, we perform probabilistic reasoning over the depth of neural networks. Different depths correspond to subnetworks which share weights and whose predictions are combined via marginalisation, yielding model uncertainty. By exploiting the sequential structure of feed-forward networks, we are able to both evaluate our training objective and make predictions with a single forward pass. We validate our approach on real-world regression and image classification tasks. Our approach provides uncertainty calibration, robustness to dataset shift, and accuracies competitive with more computationally expensive baselines.

الأسئلة المقترحة

التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا