ترغب بنشر مسار تعليمي؟ اضغط هنا

Investigation of two Fermi-LAT gamma-ray blazars coincident with high-energy neutrinos detected by IceCube

94   0   0.0 ( 0 )
 نشر من قبل Simone Garrappa
 تاريخ النشر 2019
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

After the identification of the gamma-ray blazar TXS 0506+056 as the first compelling IceCube neutrino source candidate, we perform a systematic analysis of all high-energy neutrino events satisfying the IceCube realtime trigger criteria. We find one additional known gamma-ray source, the blazar GB6 J1040+0617, in spatial coincidence with a neutrino in this sample. The chance probability of this coincidence is 30% after trial correction. For the first time, we present a systematic study of the gamma-ray flux, spectral and optical variability, and multi-wavelength behavior of GB6 J1040+0617 and compare it to TXS 0506+056. We find that TXS 0506+056 shows strong flux variability in the Fermi-LAT gamma-ray band, being in an active state around the arrival of IceCube-170922A, but in a low state during the archival IceCube neutrino flare in 2014/15. In both cases the spectral shape is statistically compatible ($leq 2sigma$) with the average spectrum showing no indication of a significant relative increase of a high-energy component. While the association of GB6 J1040+0617 with the neutrino is consistent with background expectations, the source appears to be a plausible neutrino source candidate based on its energetics and multi-wavelength features, namely a bright optical flare and modestly increased gamma-ray activity. Finding one or two neutrinos originating from gamma-ray blazars in the given sample of high-energy neutrinos is consistent with previously derived limits of neutrino emission from gamma-ray blazars, indicating the sources of the majority of cosmic high-energy neutrinos remain unknown.



قيم البحث

اقرأ أيضاً

Blazars are a subclass of active galactic nuclei (AGNs) with extreme observation properties, which is caused by the beaming effect, expressed by a Doppler factor, in a relativistic jet. Doppler factor is an important parameter in the blazars paradigm to indicate all of the observation properties, and many methods were proposed to estimate its value. In this paper, we present a method following Mattox et al. to calculate the lower limit on gamma-ray Doppler factor for 809 selected Fermi/LAT-detected gamma-ray blazars by adopting the available gamma-ray and X-ray data. Our sample included 342 flat-spectrum radio quasars (FSRQs) and 467 BL Lac objects (BL Lacs), out of which 507 sources are compiled with available radio core-dominance parameter (R) from our previous study. Our calculation shows that the average values of the lower limit on gamma-ray Doppler factor for FSRQs and BL Lacs are 6.87 and 4.31, respectively. We compare and discuss our results with those from the literature. We found that the derived lower limit on gamma-ray Doppler factor for some sources are higher than that from the radio estimation, which could be possibly explained by the jet bending within those blazars. Our results also suggest that the gamma-ray and radio regions perhaps share the same relativistic effects. The gamma-ray Doppler factor has been found to be correlated with both the gamma-ray luminosity and core-dominance parameter, implying that the jet is possibly continuous in the gamma-ray bands, and R is perhaps an indicator for a beaming effect.
We present an all-sky search for muon neutrinos produced during the prompt $gamma$-ray emission of 1172 gamma-ray bursts (GRBs) with the IceCube Neutrino Observatory. The detection of these neutrinos would constitute evidence for ultra-high energy co smic ray (UHECR) production in GRBs, as interactions between accelerated protons and the prompt $gamma$-ray field would yield charged pions, which decay to neutrinos. A previously reported search for muon neutrino tracks from Northern Hemisphere GRBs has been extended to include three additional years of IceCube data. A search for such tracks from Southern Hemisphere GRBs in five years of IceCube data has been introduced to enhance our sensitivity to the highest energy neutrinos. No significant correlation between neutrino events and observed GRBs is seen in the new data. Combining this result with previous muon neutrino track searches and a search for cascade signature events from all neutrino flavors, we obtain new constraints for single-zone fireball models of GRB neutrino and UHECR production.
108 - M. Kreter , A. Gokus , F. Krau{ss} 2020
High-$z$ blazars (z $geq 2.5$) are the most powerful class of persistent $gamma$-ray sources in the Universe. These objects possess the highest jet powers and luminosities and have black hole masses often in excess of $10^9$ solar masses. In addition , high-$z$ blazars are important cosmological probes and serve as test objects for blazar evolution models. Due to their large distance, their high-energy emission typically peaks below the GeV range, which makes them difficult to study with Fermi/LAT. Therefore, only the very brightest objects are detectable and, to date, only a small number of high-z blazars have been detected with Fermi/LAT. In this work, we studied the monthly binned long-term $gamma$-ray emission of a sample of 176 radio and optically detected blazars that have not been reported as known $gamma$-ray sources in the 3FGL catalog. In order to account for false-positive detections, we calculated monthly Fermi/LAT light curves for a large sample of blank sky positions and derived the number of random fluctuations that we expect at various test statistic (TS) levels. For a given blazar, a detection of TS > 9 in at least one month is expected $sim 15%$ of the time. Although this rate is too high to secure detection of an individual source, half of our sample shows such single-month $gamma$-ray activity, indicating a population of high-energy blazars at distances of up to z=5.2. Multiple TS > 9 monthly detections are unlikely to happen by chance, and we have detected several individual new sources in this way, including the most distant $gamma$-ray blazar, BZQ J1430+4204 (z = 4.72). Finally, two new $gamma$-ray blazars at redshifts of z = 3.63 and z = 3.11 are unambiguously detected via very significant (TS > 25) flares in individual monthly time bins.
155 - V. Beckmann , C. Ricci , S. Soldi 2009
Multiwavelength observations are essential to constrain physical parameters of the blazars observed by Fermi/LAT. Among the 187 AGN significantly detected in public INTEGRAL data above 20 keV by the imager IBIS/ISGRI, 20 blazars were detected. 15 of these sources allowed significant spectral extraction. They show hard X-ray spectra with an average photon index of 2.1+-0.1 and a hard X-ray luminosity of L(20-100 keV) = 1.3e46 erg/s. 15 of the INTEGRAL blazars are also visible in the first 16 months of the Fermi/LAT data, thus allowing to constrain the inverse Compton branch in these cases. Among others, we analyse the LAT data of four blazars which were not included in the Fermi LAT Bright AGN Sample based on the first 3 months of the mission: QSO B0836+710, H 1426+428, RX J1924.8-2914, and PKS 2149-306. Especially for blazars during bright outbursts, as already observed simultaneously by INTEGRAL and Fermi (e.g. 3C 454.3 and Mrk 421), INTEGRAL provides unique spectral coverage up to several hundred keV. We present the spectral analysis of INTEGRAL and Fermi data and demonstrate the potential of INTEGRAL observations of Fermi detected blazars in outburst by analysing the combined data set of the persistent radio galaxy Cen A.
Aims. We use a sample of 83 core-dominated active galactic nuclei (AGN) selected from the MOJAVE (Monitoring of Jets in AGN with VLBA Experiments) radio-flux-limited sample and detected with the Fermi Large Area Telescope (LAT) to study the relations between non-simultaneous radio, optical, and gamma-ray measurements. Methods. We perform a multi-band statistical analysis to investigate the relations between the emissions in different bands and reproduce these relations by modeling of the spectral energy distributions of blazars. Results. There is a significant correlation between the gamma-ray luminosity and the optical nuclear and radio (15 GHz) luminosities of blazars. We report a well defined positive correlation between the gamma-ray luminosity and the radio-optical loudness for quasars and BL Lacertae type objects (BL Lacs). A strong positive correlation is found between the radio luminosity and the gamma-ray-optical loudness for quasars, while a negative correlation between the optical luminosity and the gamma-ray-radio loudness is present for BL Lacs. Modeling of these correlations with a simple leptonic jet model for blazars indicates that variations of the accretion disk luminosity (and hence the jet power) is able to reproduce the trends observed in most of the correlations. To reproduce all observed correlations, variations of several parameters, such as the accretion power, jet viewing angle, Lorentz factor, and magnetic field of the jet, are required.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا