ترغب بنشر مسار تعليمي؟ اضغط هنا

Search for high-redshift blazars with Fermi/LAT

109   0   0.0 ( 0 )
 نشر من قبل Michael Kreter
 تاريخ النشر 2020
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

High-$z$ blazars (z $geq 2.5$) are the most powerful class of persistent $gamma$-ray sources in the Universe. These objects possess the highest jet powers and luminosities and have black hole masses often in excess of $10^9$ solar masses. In addition, high-$z$ blazars are important cosmological probes and serve as test objects for blazar evolution models. Due to their large distance, their high-energy emission typically peaks below the GeV range, which makes them difficult to study with Fermi/LAT. Therefore, only the very brightest objects are detectable and, to date, only a small number of high-z blazars have been detected with Fermi/LAT. In this work, we studied the monthly binned long-term $gamma$-ray emission of a sample of 176 radio and optically detected blazars that have not been reported as known $gamma$-ray sources in the 3FGL catalog. In order to account for false-positive detections, we calculated monthly Fermi/LAT light curves for a large sample of blank sky positions and derived the number of random fluctuations that we expect at various test statistic (TS) levels. For a given blazar, a detection of TS > 9 in at least one month is expected $sim 15%$ of the time. Although this rate is too high to secure detection of an individual source, half of our sample shows such single-month $gamma$-ray activity, indicating a population of high-energy blazars at distances of up to z=5.2. Multiple TS > 9 monthly detections are unlikely to happen by chance, and we have detected several individual new sources in this way, including the most distant $gamma$-ray blazar, BZQ J1430+4204 (z = 4.72). Finally, two new $gamma$-ray blazars at redshifts of z = 3.63 and z = 3.11 are unambiguously detected via very significant (TS > 25) flares in individual monthly time bins.

قيم البحث

اقرأ أيضاً

111 - G. Ghisellini 2010
With the release of the first year Fermi catalogue, the number of blazars detected above 100 MeV lying at high redshift has been largely increased. There are 28 blazars at z>2 in the clean sample. All of them are Flat Spectrum Radio Quasars (FSRQs). We study and model their overall spectral energy distribution in order to find the physical parameters of the jet emitting region, and for all of them we estimate their black hole masses and accretion rates. We then compare the jet with the accretion disk properties, setting these sources in the broader context of all the other bright gamma-ray or hard X-ray blazars. We confirm that the jet power correlates with the accretion luminosity. We find that the high energy emission peak shifts to smaller frequencies as the observed luminosity increases, according to the blazar sequence, making the hard X-ray band the most suitable for searching the most luminous and distant blazars.
We present multiwavelength spectral analyses of two Fermi-LAT blazars, OJ 287 and 3C 279, that are part of the Boston University multiwaveband polarization program. The data have been compiled from observations with Fermi, RXTE, the VLBA, and various ground-based optical and radio telescopes. We simulate the dynamic spectral energy distributions (SEDs) within the framework of a multi-slice, time-dependent leptonic jet model for blazars, with radiation feedback, in the internal shock scenario. We use the physical jet parameters obtained from the VLBA monitoring to guide our modeling efforts. We discuss the role of intrinsic parameters and the interplay between synchrotron and inverse Compton radiation processes responsible for producing the resultant SEDs.
After the identification of the gamma-ray blazar TXS 0506+056 as the first compelling IceCube neutrino source candidate, we perform a systematic analysis of all high-energy neutrino events satisfying the IceCube realtime trigger criteria. We find one additional known gamma-ray source, the blazar GB6 J1040+0617, in spatial coincidence with a neutrino in this sample. The chance probability of this coincidence is 30% after trial correction. For the first time, we present a systematic study of the gamma-ray flux, spectral and optical variability, and multi-wavelength behavior of GB6 J1040+0617 and compare it to TXS 0506+056. We find that TXS 0506+056 shows strong flux variability in the Fermi-LAT gamma-ray band, being in an active state around the arrival of IceCube-170922A, but in a low state during the archival IceCube neutrino flare in 2014/15. In both cases the spectral shape is statistically compatible ($leq 2sigma$) with the average spectrum showing no indication of a significant relative increase of a high-energy component. While the association of GB6 J1040+0617 with the neutrino is consistent with background expectations, the source appears to be a plausible neutrino source candidate based on its energetics and multi-wavelength features, namely a bright optical flare and modestly increased gamma-ray activity. Finding one or two neutrinos originating from gamma-ray blazars in the given sample of high-energy neutrinos is consistent with previously derived limits of neutrino emission from gamma-ray blazars, indicating the sources of the majority of cosmic high-energy neutrinos remain unknown.
397 - G. Chiaro , M. Meyer , M. Di Mauro 2019
Blazars and in particular the subclass of high synchrotron peaked Active Galactic Nuclei are among the main targets for the present generation of Imaging Atmospheric Cherenkov Telescopes (IACTs) and will remain of great importance for very high-energ y $gamma$-ray science in the era of the Cherenkov Telescope Array (CTA). Observations by IACTs, which have relatively small fields of view ($sim$ few degrees), are limited by viewing conditions; therefore, it is important to select the most promising targets in order to increase the number of detections. The aim of this paper is to search for unclassified blazars among known $gamma$-ray sources from the Fermi Large Area Telescope (LAT) third source catalog that are likely detectable with IACTs or CTA. We use an artificial neural network algorithm and updated analysis of Fermi-LAT data. We found 80 $gamma$-ray source candidates, and for the highest-confidence candidates, we calculate their potential detectability with IACTs and CTA based on an extrapolation of their energy spectra. Follow-up observations of our source candidates could significantly increase the current TeV source population sample and could ultimately confirm the efficiency of our algorithm to select TeV sources.
In the work we search for the $gamma$-ray signal from M33, one of the biggest galaxies in the Local Group, by using the Pass 8 data of Fermi Large Area Telescope (LAT). No statistically significant gamma-ray emission has been detected in the directio n of M33 and we report a new upper limit of high energy ($>100,rm MeV$) photon flux of $2.3times 10^{-9},rm ph,cm^{-2},s^{-1}$, which is more strict than previous constrains and implies a cosmic ray density of M33 lower than that speculated previously. Nevertheless the current limit is still in agreement with the correlation of star formation rate and $gamma$-ray luminosity inferred from the Local group galaxies and a few nearby starburst galaxies.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا