ﻻ يوجد ملخص باللغة العربية
High-$z$ blazars (z $geq 2.5$) are the most powerful class of persistent $gamma$-ray sources in the Universe. These objects possess the highest jet powers and luminosities and have black hole masses often in excess of $10^9$ solar masses. In addition, high-$z$ blazars are important cosmological probes and serve as test objects for blazar evolution models. Due to their large distance, their high-energy emission typically peaks below the GeV range, which makes them difficult to study with Fermi/LAT. Therefore, only the very brightest objects are detectable and, to date, only a small number of high-z blazars have been detected with Fermi/LAT. In this work, we studied the monthly binned long-term $gamma$-ray emission of a sample of 176 radio and optically detected blazars that have not been reported as known $gamma$-ray sources in the 3FGL catalog. In order to account for false-positive detections, we calculated monthly Fermi/LAT light curves for a large sample of blank sky positions and derived the number of random fluctuations that we expect at various test statistic (TS) levels. For a given blazar, a detection of TS > 9 in at least one month is expected $sim 15%$ of the time. Although this rate is too high to secure detection of an individual source, half of our sample shows such single-month $gamma$-ray activity, indicating a population of high-energy blazars at distances of up to z=5.2. Multiple TS > 9 monthly detections are unlikely to happen by chance, and we have detected several individual new sources in this way, including the most distant $gamma$-ray blazar, BZQ J1430+4204 (z = 4.72). Finally, two new $gamma$-ray blazars at redshifts of z = 3.63 and z = 3.11 are unambiguously detected via very significant (TS > 25) flares in individual monthly time bins.
With the release of the first year Fermi catalogue, the number of blazars detected above 100 MeV lying at high redshift has been largely increased. There are 28 blazars at z>2 in the clean sample. All of them are Flat Spectrum Radio Quasars (FSRQs).
We present multiwavelength spectral analyses of two Fermi-LAT blazars, OJ 287 and 3C 279, that are part of the Boston University multiwaveband polarization program. The data have been compiled from observations with Fermi, RXTE, the VLBA, and various
After the identification of the gamma-ray blazar TXS 0506+056 as the first compelling IceCube neutrino source candidate, we perform a systematic analysis of all high-energy neutrino events satisfying the IceCube realtime trigger criteria. We find one
Blazars and in particular the subclass of high synchrotron peaked Active Galactic Nuclei are among the main targets for the present generation of Imaging Atmospheric Cherenkov Telescopes (IACTs) and will remain of great importance for very high-energ
In the work we search for the $gamma$-ray signal from M33, one of the biggest galaxies in the Local Group, by using the Pass 8 data of Fermi Large Area Telescope (LAT). No statistically significant gamma-ray emission has been detected in the directio