ترغب بنشر مسار تعليمي؟ اضغط هنا

The estimation of $gamma$-ray Doppler factor for Fermi/LAT-detected blazars

108   0   0.0 ( 0 )
 نشر من قبل Zhiyuan Pei
 تاريخ النشر 2020
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Blazars are a subclass of active galactic nuclei (AGNs) with extreme observation properties, which is caused by the beaming effect, expressed by a Doppler factor, in a relativistic jet. Doppler factor is an important parameter in the blazars paradigm to indicate all of the observation properties, and many methods were proposed to estimate its value. In this paper, we present a method following Mattox et al. to calculate the lower limit on gamma-ray Doppler factor for 809 selected Fermi/LAT-detected gamma-ray blazars by adopting the available gamma-ray and X-ray data. Our sample included 342 flat-spectrum radio quasars (FSRQs) and 467 BL Lac objects (BL Lacs), out of which 507 sources are compiled with available radio core-dominance parameter (R) from our previous study. Our calculation shows that the average values of the lower limit on gamma-ray Doppler factor for FSRQs and BL Lacs are 6.87 and 4.31, respectively. We compare and discuss our results with those from the literature. We found that the derived lower limit on gamma-ray Doppler factor for some sources are higher than that from the radio estimation, which could be possibly explained by the jet bending within those blazars. Our results also suggest that the gamma-ray and radio regions perhaps share the same relativistic effects. The gamma-ray Doppler factor has been found to be correlated with both the gamma-ray luminosity and core-dominance parameter, implying that the jet is possibly continuous in the gamma-ray bands, and R is perhaps an indicator for a beaming effect.



قيم البحث

اقرأ أيضاً

After the identification of the gamma-ray blazar TXS 0506+056 as the first compelling IceCube neutrino source candidate, we perform a systematic analysis of all high-energy neutrino events satisfying the IceCube realtime trigger criteria. We find one additional known gamma-ray source, the blazar GB6 J1040+0617, in spatial coincidence with a neutrino in this sample. The chance probability of this coincidence is 30% after trial correction. For the first time, we present a systematic study of the gamma-ray flux, spectral and optical variability, and multi-wavelength behavior of GB6 J1040+0617 and compare it to TXS 0506+056. We find that TXS 0506+056 shows strong flux variability in the Fermi-LAT gamma-ray band, being in an active state around the arrival of IceCube-170922A, but in a low state during the archival IceCube neutrino flare in 2014/15. In both cases the spectral shape is statistically compatible ($leq 2sigma$) with the average spectrum showing no indication of a significant relative increase of a high-energy component. While the association of GB6 J1040+0617 with the neutrino is consistent with background expectations, the source appears to be a plausible neutrino source candidate based on its energetics and multi-wavelength features, namely a bright optical flare and modestly increased gamma-ray activity. Finding one or two neutrinos originating from gamma-ray blazars in the given sample of high-energy neutrinos is consistent with previously derived limits of neutrino emission from gamma-ray blazars, indicating the sources of the majority of cosmic high-energy neutrinos remain unknown.
The detection of periodicities in light curves of active galacticnuclei (AGN) could have profound consequences for our understanding of the nature and radiation physics of these objects. At high energies (HE; E>100 MeV) 5 blazars (PG 1553+113,PKS 215 5-304, 0426-380, 0537-441, 0301-243) have been reported to show year-like quasi-periodic variations (QPVs) with significance >3 sig. As these findings are based on few cycles only, care needs to be taken to properly account for random variations which can produce intervals of seemingly periodic behaviour. We present results of an updated timing analysis for 6 blazars (adding PKS 0447-439), utilizing suitable methods to evaluate their long term variability properties and to search for QPVs in their light curves. We generate gamma-ray light curves covering almost 10 years, study their timing properties and search for QPVs using the Lomb-Scargle Periodogram and the Wavelet Z-transform. Extended Monte Carlo simulations are used to evaluate the statistical significance. Comparing their probability density functions (PDFs), all sources (except PG 1553+113) exhibit a clear deviation from a Gaussian distribution, but are consistent with being log-normal, suggesting that the underlying variability is of a non-linear, multiplicative nature. Apart from PKS 0301-243 the power spectral density for all investigated blazars is close to flicker noise (PL slope -1). Possible QPVs with a local significance ~ 3 sig. are found in all light curves (apart from PKS 0426-380 and 0537-441), with observed periods between (1.7-2.8) yr. The evidence is strongly reduced, however, if evaluated in terms of a global significance. Our results advise caution as to the significance of reported year-like HE QPVs in blazars. Somewhat surprisingly, the putative, redshift-corrected periods are all clustering around 1.6 yr. We speculate on possible implications for QPV generation.
We compare the gamma-ray photon flux variability of northern blazars in the Fermi/LAT First Source Catalog with 37 GHz radio flux density curves from the Metsahovi quasar monitoring program. We find that the relationship between simultaneous millimet er (mm) flux density and gamma-ray photon flux is different for different types of blazars. The flux relation between the two bands is positively correlated for quasars and does no exist for BLLacs. Furthermore, we find that the levels of gamma-ray emission in high states depend on the phase of the high frequency radio flare, with the brightest gamma-ray events coinciding with the initial stages of a mm flare. The mean observed delay from the beginning of a mm flare to the peak of the gamma-ray emission is about 70 days, which places the average location of the gamma-ray production at or downstream of the radio core. We discuss alternative scenarios for the production of gamma-rays at distances of parsecs along the length of the jet
The Large Area Telescope (LAT) on the Fermi satellite is the first gamma-ray instrument to discover pulsars directly via their gamma-ray emission. Roughly one third of the 117 gamma-ray pulsars detected by the LAT in its first three years were discov ered in blind searches of gamma-ray data and most of these are undetectable with current radio telescopes. I review some of the key LAT results and highlight the specific challenges faced in gamma-ray (compared to radio) searches, most of which stem from the long, sparse data sets and the broad, energy-dependent point-spread function (PSF) of the LAT. I discuss some ongoing LAT searches for gamma-ray millisecond pulsars (MSPs) and gamma-ray pulsars around the Galactic Center. Finally, I outline the prospects for future gamma-ray pulsar discoveries as the LAT enters its extended mission phase, including advantages of a possible modification of the LAT observing profile.
The Fermi Large Area Telescope (LAT) is a powerful pulsar detector, as demonstrated by the over one hundred objects in its second catalog of pulsars. Pass 8 is a new reconstruction and event selection strategy developed by the Fermi-LAT collaboration . Due to the increased acceptance at low energy, Pass 8 improves the pulsation detection sensitivity. Ten new pulsars rise above the 5 sigma threshold and are presented in this work, as well as one previously seen with the former Pass 7 reconstruction. More than 60$%$ of the known pulsars with spin-down power ($dot{E}$) greater than $10^{36}$ erg/s show pulsations in gamma-rays, as seen with the Fermi Large Area Telescope. Many non-detections of these energetic pulsars are thought to be a consequence of a high background level, or a large distance leading to a flux below the sensitivity limit of the instrument. The gamma-ray beams of the others probably miss the Earth. The new Pass 8 data now allows the detection of gamma ray pulsations from three of these high spin-down pulsars, PSRs J1828$-$1101, J1831$-$0952 and J1837$-$0604, as well as three others with $dot{E}$ $ge 10^{35}$ erg/s. We report on their properties and we discuss the reasons for their detection with Pass 8.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا