ﻻ يوجد ملخص باللغة العربية
Physical systems in the time domain may exhibit analogous phenomena in real space, such as time crystals, time-domain Fresnel lenses, and modulational interference in a qubit. Here we report the experimental realization of time-domain grating using a superconducting qutrit in periodically modulated probe and control fields via two schemes: Simultaneous modulation and complementary modulation. Both experimental and numerical results exhibit modulated Autler-Townes (AT) and modulation-induced diffraction (MID) effects. Theoretical results also confirm that the peak positions of the interference fringes of AT and MID effects are determined by the usual two-level relative phases, while the observed diffraction fringes, appearing only in the complementary modulation, are however related to the three-level relative phase. Further analysis indicates that such a single-atom time-domain diffraction originates from the correlation effect between the two time-domain gratings. Moreover, we find that the widths of the diffraction fringes are independent of the control-field power. Our results shed light on the experimental exploration of quantum coherence for modulated multi-level systems and may find promising applications in fast all-microwave switches and quantum-gate operations in the strong-driving regime.
We provide numerical evidence for a temporal quantum-mechanical interference phenomenon: time molecules (TM). A variety of such stroboscopic states are observed in the dynamics of two interacting qubits subject to a periodic sequence of $pi$-pulses w
We propose a quantum metrology protocol for measuring frequencies and weak forces based on a periodic modulating quantum Jahn-Teller system composed of a single spin interacting with two bosonic modes. We show that in the first order of the frequency
Making use of coherence and entanglement as metrological quantum resources allows to improve the measurement precision from the shot-noise- or quantum limit to the Heisenberg limit. Quantum metrology then relies on the availability of quantum enginee
The non-trivial zeros of the Riemann zeta function are central objects in number theory. In particular, they enable one to reproduce the prime numbers. They have also attracted the attention of physicists working in Random Matrix Theory and Quantum C
We report the analogue simulation of an ergodiclocalized junction by using an array of 12 coupled superconducting qubits. To perform the simulation, we fabricated a superconducting quantum processor that is divided into two domains: a driven domain r