ترغب بنشر مسار تعليمي؟ اضغط هنا

Ergodic-localized junctions in a periodically-driven spin chain

135   0   0.0 ( 0 )
 نشر من قبل Chen Zha
 تاريخ النشر 2020
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We report the analogue simulation of an ergodiclocalized junction by using an array of 12 coupled superconducting qubits. To perform the simulation, we fabricated a superconducting quantum processor that is divided into two domains: a driven domain representing an ergodic system, while the second is localized under the effect of disorder. Due to the overlap between localized and delocalized states, for small disorder there is a proximity effect and localization is destroyed. To experimentally investigate this, we prepare a microwave excitation in the driven domain and explore how deep it can penetrate the disordered region by probing its dynamics. Furthermore, we performed an ensemble average over 50 realizations of disorder, which clearly shows the proximity effect. Our work opens a new avenue to build quantum simulators of driven-disordered systems with applications in condensed matter physics and material science



قيم البحث

اقرأ أيضاً

Quantum phases of matter have many relevant applications in quantum computation and quantum information processing. Current experimental feasibilities in diverse platforms allow us to couple two or more subsystems in different phases. In this letter, we investigate the situation where one couples two domains of a periodically-driven spin chain where one of them is ergodic while the other is fully localized. By combining tools of both graph and Floquet theory, we show that the localized domain remains stable for strong disorder, but as this disorder decreases the localized domain becomes ergodic.
We investigate the entanglement of the ferromagnetic XY model in a random magnetic field at zero temperature and in the uniform magnetic field at finite temperatures. We use the concurrence to quantify the entanglement. We find that, in the ferromagn etic region of the uniform magnetic field $h$, all the concurrences are textit{generated} by the random magnetic field and by the thermal fluctuation. In one particular region of $h$, the next-nearest neighbor concurrence is generated by the random field but not at finite temperatures. We also find that the qualitative behavior of the maximum point of the entanglement in the random magnetic field depends on whether the variance of its distribution function is finite or not.
119 - Oliver Lunt , Arijeet Pal 2020
The resilience of quantum entanglement to a classicality-inducing environment is tied to fundamental aspects of quantum many-body systems. The dynamics of entanglement has recently been studied in the context of measurement-induced entanglement trans itions, where the steady-state entanglement collapses from a volume-law to an area-law at a critical measurement probability $p_{c}$. Interestingly, there is a distinction in the value of $p_{c}$ depending on how well the underlying unitary dynamics scramble quantum information. For strongly chaotic systems, $p_{c} > 0$, whereas for weakly chaotic systems, such as integrable models, $p_{c} = 0$. In this work, we investigate these measurement-induced entanglement transitions in a system where the underlying unitary dynamics are many-body localized (MBL). We demonstrate that the emergent integrability in an MBL system implies a qualitative difference in the nature of the measurement-induced transition depending on the measurement basis, with $p_{c} > 0$ when the measurement basis is scrambled and $p_{c} = 0$ when it is not. This feature is not found in Haar-random circuit models, where all local operators are scrambled in time. When the transition occurs at $p_{c} > 0$, we use finite-size scaling to obtain the critical exponent $ u = 1.3(2)$, close to the value for 2+0D percolation. We also find a dynamical critical exponent of $z = 0.98(4)$ and logarithmic scaling of the R{e}nyi entropies at criticality, suggesting an underlying conformal symmetry at the critical point. This work further demonstrates how the nature of the measurement-induced entanglement transition depends on the scrambling nature of the underlying unitary dynamics. This leads to further questions on the control and simulation of entangled quantum states by measurements in open quantum systems.
The characterizing feature of a many-body localized phase is the existence of an extensive set of quasi-local conserved quantities with an exponentially localized support. This structure endows the system with the signature logarithmic in time entang lement growth between spatial partitions. This feature differentiates the phase from Anderson localization, in a non-interacting model. Experimentally measuring the entanglement between large partitions of an interacting many-body system requires highly non-local measurements which are currently beyond the reach of experimental technology. In this work we demonstrate that the defining structure of many-body localization can be detected by the dynamics of a simple quantity from quantum information known as the total correlations which is connected to the local entropies. Central to our finding is the necessity to propagate specific initial states, drawn from the Hamiltonian unbiased basis (HUB). The dynamics of the local entropies and total correlations requires only local measurements in space and therefore is potentially experimentally accessible in a range of platforms.
We investigate measurement-induced phase transitions in the Quantum Ising chain coupled to a monitoring environment. We compare two different limits of the measurement problem, the stochastic quantum-state diffusion protocol corresponding to infinite small jumps per unit of time and the no-click limit, corresponding to post-selection and described by a non-Hermitian Hamiltonian. In both cases we find a remarkably similar phenomenology as the measurement strength $gamma$ is increased, namely a sharp transition from a critical phase with logarithmic scaling of the entanglement to an area-law phase, which occurs at the same value of the measurement rate in the two protocols. An effective central charge, extracted from the logarithmic scaling of the entanglement, vanishes continuously at the common transition point, although with different critical behavior possibly suggesting different universality classes for the two protocols. We interpret the central charge mismatch near the transition in terms of noise-induced disentanglement, as suggested by the entanglement statistics which displays emergent bimodality upon approaching the critical point. The non-Hermitian Hamiltonian and its associated subradiance spectral transition provide a natural framework to understand both the extended critical phase, emerging here for a model which lacks any continuous symmetry, and the entanglement transition into the area law.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا