ﻻ يوجد ملخص باللغة العربية
We report the analogue simulation of an ergodiclocalized junction by using an array of 12 coupled superconducting qubits. To perform the simulation, we fabricated a superconducting quantum processor that is divided into two domains: a driven domain representing an ergodic system, while the second is localized under the effect of disorder. Due to the overlap between localized and delocalized states, for small disorder there is a proximity effect and localization is destroyed. To experimentally investigate this, we prepare a microwave excitation in the driven domain and explore how deep it can penetrate the disordered region by probing its dynamics. Furthermore, we performed an ensemble average over 50 realizations of disorder, which clearly shows the proximity effect. Our work opens a new avenue to build quantum simulators of driven-disordered systems with applications in condensed matter physics and material science
Quantum phases of matter have many relevant applications in quantum computation and quantum information processing. Current experimental feasibilities in diverse platforms allow us to couple two or more subsystems in different phases. In this letter,
We investigate the entanglement of the ferromagnetic XY model in a random magnetic field at zero temperature and in the uniform magnetic field at finite temperatures. We use the concurrence to quantify the entanglement. We find that, in the ferromagn
The resilience of quantum entanglement to a classicality-inducing environment is tied to fundamental aspects of quantum many-body systems. The dynamics of entanglement has recently been studied in the context of measurement-induced entanglement trans
The characterizing feature of a many-body localized phase is the existence of an extensive set of quasi-local conserved quantities with an exponentially localized support. This structure endows the system with the signature logarithmic in time entang
We investigate measurement-induced phase transitions in the Quantum Ising chain coupled to a monitoring environment. We compare two different limits of the measurement problem, the stochastic quantum-state diffusion protocol corresponding to infinite