ﻻ يوجد ملخص باللغة العربية
Making use of coherence and entanglement as metrological quantum resources allows to improve the measurement precision from the shot-noise- or quantum limit to the Heisenberg limit. Quantum metrology then relies on the availability of quantum engineered systems that involve controllable quantum degrees of freedom which are sensitive to the measured quantity. Sensors operating in the qubit mode and exploiting their coherence in a phase-sensitive measurement have been shown to approach the Heisenberg scaling in precision. Here, we show that this result can be further improved by operating the quantum sensor in the qudit mode, i.e., by exploiting $d$ rather than 2 levels. Specifically, we describe the metrological algorithm for using a superconducting transmon device operating in a qutrit mode as a magnetometer. The algorithm is based on the base-3 semi-quantum Fourier transformation and enhances the quantum theoretical performance of the sensor by a factor 2. Even more, the practical gain of our qutrit-implementation is found in a reduction of the number of iteration steps of the quantum Fourier transformation by a factor $log 2/log 3 approx 0.63$ as compared to the qubit mode. We show, that a two-tone capacitively coupled rf-signal is sufficient for the implementation of the algorithm.
The impact of measurement imperfections on quantum metrology protocols has been largely ignored, even though these are inherent to any sensing platform in which the detection process exhibits noise that neither can be eradicated, nor translated onto
We present a novel one-way quantum key distribution protocol based on 3-dimensional quantum state, a qutrit, that encodes two qubits in its 2-dimensional subspaces. The qubits hold the classical bit information that has to be shared between the legit
Building a quantum computer is a daunting challenge since it requires good control but also good isolation from the environment to minimize decoherence. It is therefore important to realize quantum gates efficiently, using as few operations as possib
Physical systems close to a quantum phase transition exhibit a divergent susceptibility, suggesting that an arbitrarily-high precision may be achieved by exploiting quantum critical systems as probes to estimate a physical parameter. However, such an
We propose an implementation of a quantum router for microwave photons in a superconducting qubit architecture consisting of a transmon qubit, SQUIDs and a nonlinear capacitor. We model and analyze the dynamics of operation of the quantum switch usin