ﻻ يوجد ملخص باللغة العربية
Context: Open clusters are ideal laboratories to investigate a variety of astrophysical topics, from the properties of the Galactic disk to stellar evolutionary models. Knowing their metallicity and possibly detailed chemical abundances is therefore important. However, the number of systems with chemical abundances determined from high resolution spectroscopy is still small. Aims: To increase the number of open clusters with radial velocities and chemical abundances determined from high resolution spectroscopy we used publicly available catalogues of surveys in combination with Gaia data. Methods: Open cluster stars have been identified in the APOGEE and GALAH spectroscopic surveys by cross-matching their latest data releases with stars for which high-probability astrometric membership has been derived in many clusters on the basis of the Gaia second data release. Results: Radial velocities have been determined for 131 and 14 clusters from APOGEE and GALAH data, respectively. This is the first radial velocity determination from high resolution spectra for 16 systems. Iron abundances have been obtained for 90 and 14 systems from APOGEE and GALAH samples, respectively. To our knowledge 66 of these clusters (57 in APOGEE and 9 in GALAH) do not have previous determinations in the literature. For 90 and 7 clusters in the APOGEE and GALAH samples, respectively, we have also determined average abundances for Na, Mg, Al, Si, Ca, Cr, Mn, and Ni.
The ongoing Gaia mission of ESA will provide accurate spatial and kinematical information for a large fraction of stars in the Galaxy. Interstellar extinction and line absorption studies toward a large number of stars at different distances and direc
GALAH and APOGEE are two high resolution multi object spectroscopic surveys that provide fundamental stellar parameters and multiple elemental abundance estimates for $>$ 400,000 stars in the Milky Way. They are complimentary in both sky coverage and
We present an analysis of three southern open star clusters NGC 6067, NGC 2506 and IC 4651 using wide-field photometric and Gaia DR2 astrometric data. They are poorly studied clusters. We took advantage of the synergy between Gaia DR2 high precision
Stellar and supernova nucleosynthesis in the first few billion years of the cosmic history have set the scene for early structure formation in the Universe, while little is known about their nature. Making use of stellar physical parameters measured
Very precise observational data are needed for studying the stellar cluster parameters (distance, reddening, age, metallicity) and cluster internal kinematics. In turn, these give us an insight into the properties of our Galaxy, for example, by givin