ترغب بنشر مسار تعليمي؟ اضغط هنا

Origin of metals in old Milky Way halo stars based on GALAH and Gaia

199   0   0.0 ( 0 )
 نشر من قبل Miho N. Ishigaki
 تاريخ النشر 2021
  مجال البحث فيزياء
والبحث باللغة English
 تأليف Miho N. Ishigaki




اسأل ChatGPT حول البحث

Stellar and supernova nucleosynthesis in the first few billion years of the cosmic history have set the scene for early structure formation in the Universe, while little is known about their nature. Making use of stellar physical parameters measured by GALAH Data Release 3 with accurate astrometry from the Gaia EDR3, we have selected $sim 100$ old main-sequence turn-off stars (ages $gtrsim 12$ Gyrs) with kinematics compatible with the Milky Way stellar halo population in the Solar neighborhood. Detailed homogeneous elemental abundance estimates by GALAH DR3 are compared with supernova yield models of Pop~III (zero-metal) core-collapse supernovae (CCSNe), normal (non-zero-metal) CCSNe, and Type Ia supernovae (SN Ia) to examine which of the individual yields or their combinations best reproduce the observed elemental abundance patterns for each of the old halo stars (OHS). We find that the observed abundances in the OHS with [Fe/H]$>-1.5$ are best explained by contributions from both CCSNe and SN~Ia, where the fraction of SN~Ia among all the metal-enriching SNe is up to 10-20 % for stars with high [Mg/Fe] ratios and up to 20-27 % for stars with low [Mg/Fe] ratios, depending on the assumption about the relative fraction of near-Chandrasekhar-mass SNe Ia progenitors. The results suggest that, in the progenitor systems of the OHS with [Fe/H]$>-1.5$, $sim$ 50-60% of Fe mass originated from normal CCSNe at the earliest phases of the Milky Way formation. These results provide an insight into the birth environments of the oldest stars in the Galactic halo.

قيم البحث

اقرأ أيضاً

Since the advent of $Gaia$ astrometry, it is possible to identify massive accreted systems within the Galaxy through their unique dynamical signatures. One such system, $Gaia$-Sausage-Enceladus (GSE), appears to be an early building block given its v irial mass $> 10^{10},mathrm{M_odot}$ at infall ($zsim1-3$). In order to separate the progenitor population from the background stars, we investigate its chemical properties with up to 30 element abundances from the GALAH+ Survey Data Release 3 (DR3). To inform our choice of elements for purely chemically selecting accreted stars, we analyse 4164 stars with low-$alpha$ abundances and halo kinematics. These are most different to the Milky Way stars for abundances of Mg, Si, Na, Al, Mn, Fe, Ni, and Cu. Based on the significance of abundance differences and detection rates, we apply Gaussian mixture models to various element abundance combinations. We find the most populated and least contaminated component, which we confirm to represent GSE, contains 1049 stars selected via [Na/Fe] vs. [Mg/Mn] in GALAH+ DR3. We provide tables of our selections and report the chrono-chemodynamical properties (age, chemistry, and dynamics). Through a previously reported clean dynamical selection of GSE stars, including $30 < sqrt{J_R~/~mathrm{kpc,km,s^{-1}}} < 55$, we can characterise an unprecedented 24 abundances of this structure with GALAH+ DR3. Our chemical selection allows us to prevent circular reasoning and characterise the dynamical properties of the GSE, for example mean $sqrt{J_R~/~mathrm{kpc,km,s^{-1}}} = 26_{-14}^{+9}$. We find only $(29pm1)%$ of the GSE stars within the clean dynamical selection region. We thus discuss chemodynamic selections (such as eccentricity and upper limits on [Na/Fe]).
Gaia DR2 has revealed new small-scale and large-scale patterns in the phase-space distribution of stars in the Milky Way. In cylindrical Galactic coordinates $(R,phi,z)$, ridge-like structures can be seen in the vphiR{} plane and asymmetric arch-like structures in the vphivR{} plane. We show that the ridges are also clearly present when the third dimension of the vphiR{} plane is represented by $langle z rangle$, $langle V_z rangle$, $langle V_R rangle$, $langle$[Fe/H]$rangle$ and $langle[alpha/{rm Fe}]rangle$. The maps suggest that stars along the ridges lie preferentially close to the Galactic midplane ($|z|<0.2$ kpc), and have metallicity and $alpha$ elemental abundance similar to that of the Sun. We show that phase mixing of disrupting spiral arms can generate both the ridges and the arches. It also generates discrete groupings in orbital energy $-$ the ridges and arches are simply surfaces of constant energy. We identify 8 distinct ridges in the gaia{} data: six of them have constant energy while two have constant angular momentum. Given that the signature is strongest for stars close to the plane, the presence of ridges in $langle z rangle$ and $langle V_z rangle$ suggests a coupling between planar and vertical directions. We demonstrate, using N-body simulations that such coupling can be generated both in isolated discs and in discs perturbed by an orbiting satellite like the Sagittarius dwarf galaxy.
We exploit the [Mg/Mn]-[Al/Fe] chemical abundance plane to help identify nearby halo stars in the 14th data release from the APOGEE survey that have been accreted on to the Milky Way. Applying a Gaussian Mixture Model, we find a `blob of 856 likely a ccreted stars, with a low disc contamination rate of ~7%. Cross-matching the sample with the second data release from Gaia gives us access to parallaxes and apparent magnitudes, which place constraints on distances and intrinsic luminosities. Using a Bayesian isochrone pipeline, this enables us to estimate new ages for the accreted stars, with typical uncertainties of ~20%. Our new catalogue is further supplemented with estimates of orbital parameters. The blob stars span a metallicities between -0.5 to -2.5, and [Mg/Fe] between -0.1 to 0.5. They constitute ~30% of the metal-poor ([Fe/H] < -0.8) halo at metallicities of ~-1.4. Our new ages are mainly range between 8 to 13 Gyr, with the oldest stars the metal-poorest, and with the highest [Mg/Fe] abundance. If the blob stars are assumed to belong to a single progenitor, the ages imply that the system merged with our Milky Way around 8 Gyr ago and that star formation proceeded for ~5 Gyr. Dynamical arguments suggest that such a single progenitor would have a total mass of ~1011Msun, similar to that found by other authors using chemical evolution models and simulations. Comparing the scatter in the [Mg/Fe]-[Fe/H] plane of the blob stars to that measured for stars belonging to the Large Magellanic Cloud suggests that the blob does indeed contain stars from only one progenitor.
We present chemical abundances of 57 metal-poor stars that are likely constituents of the outer stellar halo in the Milky Way. Almost all of the sample stars have an orbit reaching a maximum vertical distance (Z_max) of >5 kpc above and below the Gal actic plane. High-resolution, high signal-to-noise spectra for the sample stars obtained with Subaru/HDS are used to derive chemical abundances of Na, Mg, Ca, Ti, Cr, Mn, Fe, Ni, Zn, Y and Ba with an LTE abundance analysis code. The resulting abundance data are combined with those presented in literature that mostly targeted at smaller Z_max stars, and both data are used to investigate any systematic trends in detailed abundance patterns depending on their kinematics. It is shown that, in the metallicity range of -2<[Fe/H]<-1, the [Mg/Fe] ratios for the stars with Z_max>5 kpc are systematically lower (~0.1 dex) than those with smaller Z_max. This result of the lower [alpha/Fe] for the assumed outer halo stars is consistent with previous studies that found a signature of lower [alpha/Fe] ratios for stars with extreme kinematics. A distribution of the [Mg/Fe] ratios for the outer halo stars partly overlaps with that for stars belonging to the Milky Way dwarf satellites in the metallicity interval of -2<[Fe/H]<-1 and spans a range intermediate between the distributions for the inner halo stars and the stars belonging to the satellites. Our results confirm inhomogeneous nature of chemical abundances within the Milky Way stellar halo depending on kinematic properties of constituent stars as suggested by earlier studies. Possible implications for the formation of the Milky Way halo and its relevance to the suggested dual nature of the halo are discussed.
GALAH and APOGEE are two high resolution multi object spectroscopic surveys that provide fundamental stellar parameters and multiple elemental abundance estimates for $>$ 400,000 stars in the Milky Way. They are complimentary in both sky coverage and wavelength regime. Thus combining the two surveys will provide us a large sample to investigate the disc metallicity and alpha abundance trends. We use the Cannon data-driven approach selecting training sets from among $sim$20,000 stars in common for the two surveys to predict the GALAH scaled stellar parameters from APOGEE spectra as well as APOGEE scaled stellar parameters from GALAH spectra. We provide two combined catalogues with GALAH scaled and APOGEE scaled stellar parameters each having $sim$500,000 stars after quality cuts. With $sim$470,000 stars that are common in both these catalogues, we compare the GALAH scaled and APOGEE scaled metallicity distribution functions (MDF), radial and vertical metallicity gradients as well as the variation of [$alpha$/Fe] vs [Fe/H] trends along and away from the Galactic mid plane. We find mean metallicities of APOGEE scaled sample to be higher compared to that for the GALAH scaled sample. We find similar [$alpha$/Fe] vs [Fe/H] trends using both samples consistent with previous observational as well as simulation based studies. Radial and vertical metallicity gradients derived using the two survey scaled samples are consistent except in the inner and outer Galactocentric radius bins. Our gradient estimates in the solar neighborhood are also consistent with previous studies and are backed by larger sample size compared to previous works.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا