ترغب بنشر مسار تعليمي؟ اضغط هنا

The GALAH survey: Milky Way disc metallicity and alpha-abundance trends in combined APOGEE-GALAH catalogues

68   0   0.0 ( 0 )
 نشر من قبل Govind Nandakumar
 تاريخ النشر 2020
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

GALAH and APOGEE are two high resolution multi object spectroscopic surveys that provide fundamental stellar parameters and multiple elemental abundance estimates for $>$ 400,000 stars in the Milky Way. They are complimentary in both sky coverage and wavelength regime. Thus combining the two surveys will provide us a large sample to investigate the disc metallicity and alpha abundance trends. We use the Cannon data-driven approach selecting training sets from among $sim$20,000 stars in common for the two surveys to predict the GALAH scaled stellar parameters from APOGEE spectra as well as APOGEE scaled stellar parameters from GALAH spectra. We provide two combined catalogues with GALAH scaled and APOGEE scaled stellar parameters each having $sim$500,000 stars after quality cuts. With $sim$470,000 stars that are common in both these catalogues, we compare the GALAH scaled and APOGEE scaled metallicity distribution functions (MDF), radial and vertical metallicity gradients as well as the variation of [$alpha$/Fe] vs [Fe/H] trends along and away from the Galactic mid plane. We find mean metallicities of APOGEE scaled sample to be higher compared to that for the GALAH scaled sample. We find similar [$alpha$/Fe] vs [Fe/H] trends using both samples consistent with previous observational as well as simulation based studies. Radial and vertical metallicity gradients derived using the two survey scaled samples are consistent except in the inner and outer Galactocentric radius bins. Our gradient estimates in the solar neighborhood are also consistent with previous studies and are backed by larger sample size compared to previous works.



قيم البحث

اقرأ أيضاً

If the Galaxy is axisymmetric and in dynamical equilibrium, we expect negligible fluctuations in the residual line-of-sight velocity field. Recent results using the apg{} survey find significant fluctuations in velocity for stars in the midplane ($|z |<$0.25 kpc) out to 5 kpc, suggesting that the dynamical influence of non-axisymmetric features i.e., the Milky Ways bar, spiral arms and merger events extends out to the Solar neighborhood. Their measured power spectrum has a characteristic amplitude of 11 kms{} on a scale of 2.5 kpc. The existence of such large-scale streaming motions has important implications for determining the Suns motion about the Galactic Centre. Using Red Clump stars from glh{} and apg{}, we map the line-of-sight velocities around the Sun (d$<$5 kpc), and $|z|<$1.25 kpc from the midplane. By subtracting a smooth axisymmetric model for the velocity field, we study the residual fluctuations and compare our findings with mock survey generated by glx{}. We find negligible large-scale fluctuations away from the plane. In the mid-plane, we reproduce the earlier apg{} power spectrum but with 20% smaller amplitude (9.3 kms{}) after taking into account a few systematics (e.g., volume completeness). Using a flexible axisymmetric model the power-amplitude is further reduced to 6.3 kms{}. Additionally, our simulations show that, in the plane, distances are underestimated for high-mass Red Clump stars which can lead to spurious power-amplitude of about 5.2 kms{}. Taking this into account, we estimate the amplitude of real fluctuations to be $<$4.6 kms{}, about a factor of three less than the apg{} result.
Using data from the GALAH survey, we explore the dependence of elemental abundances on stellar age and metallicity among Galactic disc stars. We find that the abundance of most elements can be predicted from age and [Fe/H] with an intrinsic scatter o f about 0.03 dex. We discuss the possible causes for the existence of the abundance-age-metallicity relations. Using a stochastic chemical enrichment scheme based on the size of Supernovae remnants, we show the intrinsic scatter is expected to be small, about 0.05 dex or even smaller if there is additional mixing in the ISM. Elemental abundances show trends with both age and metallicity and the relationship is well described by a simple model in which the dependence of abundance ([X/Fe]) on age and [Fe/H] are additively separable. Elements can be grouped based on the direction of their abundance gradient in the (age,[Fe/H]) plane and different groups can be roughly associated with three distinct nucleosynthetic production sites, the exploding massive stars, the exploding white dwarfs and the AGB stars. However, the abundances of some elements, like Co, La, and Li, show large scatter for a given age and metallicity, suggesting processes other than simple Galactic chemical evolution are at play. We also compare the abundance trends of main-sequence turn-off stars against that of giants, whose ages were estimated using asteroseismic information from the K2 mission. For most elements, the trends of main-sequence turn-off stars are similar to that of giants. The existence of abundance relations implies that we can estimate the age and birth radius of disc stars, which is important for studying the dynamic and chemical evolution of the Galaxy.
Open cluster members are coeval and share the same initial bulk chemical compositions. Consequently, differences in surface abundances between members of a cluster that are at different evolutionary stages can be used to study the effects of mixing a nd internal chemical processing. We carry out an abundance analysis of seven elements (Li, O, Na, Mg, Al, Si, Fe) in 66 stars belonging to the open cluster M67, based on high resolution GALAH spectra, 1D MARCS model atmospheres, and, for the first time for a large sample of M67 stars, non-local thermodynamic equilibrium (non-LTE) radiative transfer. From the non-LTE analysis, we find a typical star-to-star scatter in the abundance ratios of around 0.05 dex; this scatter is slightly but systematically larger when LTE is assumed instead. We find trends in the abundance ratios with effective temperature, indicating systematic differences in the surface abundances between turn-off and giant stars; these trends are more pronounced when LTE is assumed. However, in the non-LTE analysis, most of the element trends have been flattened. Two species are exceptions to this behaviour, namely Al and Si, which both clearly display remaining trends in the non-LTE analysis. We comment on the possible origin of these trends, by comparing them with recent stellar models that include atomic diffusion.
(Abridged) We analyzed the stellar parameters and radial velocities of ~1200 stars in five bulge fields as determined from the Gaia-ESO survey data (iDR1). We use VISTA Variables in The Via Lactea (VVV) photometry to obtain reddening values by using a semi-empirical T_eff-color calibration. From a Gaussian decomposition of the metallicity distribution functions, we unveil a clear bimodality in all fields, with the relative size of components depending of the specific position on the sky. In agreement with some previous studies, we find a mild gradient along the minor axis (-0.05 dex/deg between b=-6 and b=-10) that arises from the varying proportion of metal-rich and metal-poor components. The number of metal-rich stars fades in favor of the metal-poor stars with increasing b. The K-magnitude distribution of the metal-rich population splits into two peaks for two of the analyzed fields that intersects the near and far branches of the X-shaped bulge structure. In addition, two lateral fields at (l,b)=(7,-9) and (l,b)=(-10,-8) present contrasting characteristics. In the former, the metallicity distribution is dominated by metal-rich stars, while in the latter it presents a mix of a metal-poor population and and a metal-intermediate one, of nearly equal sizes. Finally, we find systematic differences in the velocity dispersion between the metal-rich and the metal-poor components of each field. Our chemo-kinematical analysis is consistent with a varying field-to-field proportion of stars belonging to (i) a metal-rich boxy/peanut X-shaped component, with bar-like kinematics, and (ii) a metal-poor more extended rotating structure with a higher velocity dispersion that dominates far from the Galactic plane. These first GES data allow studying the detailed spatial dependence of the Galactic bulge populations, thanks to the analysis of individual fields with relatively high statistics.
Gaia DR2 has revealed new small-scale and large-scale patterns in the phase-space distribution of stars in the Milky Way. In cylindrical Galactic coordinates $(R,phi,z)$, ridge-like structures can be seen in the vphiR{} plane and asymmetric arch-like structures in the vphivR{} plane. We show that the ridges are also clearly present when the third dimension of the vphiR{} plane is represented by $langle z rangle$, $langle V_z rangle$, $langle V_R rangle$, $langle$[Fe/H]$rangle$ and $langle[alpha/{rm Fe}]rangle$. The maps suggest that stars along the ridges lie preferentially close to the Galactic midplane ($|z|<0.2$ kpc), and have metallicity and $alpha$ elemental abundance similar to that of the Sun. We show that phase mixing of disrupting spiral arms can generate both the ridges and the arches. It also generates discrete groupings in orbital energy $-$ the ridges and arches are simply surfaces of constant energy. We identify 8 distinct ridges in the gaia{} data: six of them have constant energy while two have constant angular momentum. Given that the signature is strongest for stars close to the plane, the presence of ridges in $langle z rangle$ and $langle V_z rangle$ suggests a coupling between planar and vertical directions. We demonstrate, using N-body simulations that such coupling can be generated both in isolated discs and in discs perturbed by an orbiting satellite like the Sagittarius dwarf galaxy.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا