ﻻ يوجد ملخص باللغة العربية
The key problem of statistical physics standing over one hundred years is how to exactly calculate the partition function (or free energy) of many-body interaction systems, which severely hinders application of the theory for realistic systems. Here we present a novel approach that works at least four orders faster than state-of-the-art algorithms to the problem and can be applied to predict thermal properties of large molecules or macroscopic condensed matters via emph{ab initio} calculations.The method was demonstrated by C$_{60}$ molecules, solid and liquid copper (up to $sim 600$GPa), solid argon, graphene and silicene on substrate, and the derived internal energy or pressure is in a good agreement with the results of vast molecular dynamics simulations in a temperature range up to $2500$K, achieving a precision at least one order higher than previous methods. And, for the first time, the realistic isochoric equation of state for solid argon was reproduced directly from the partition function.
Modeling many-body quantum systems with strong interactions is one of the core challenges of modern physics. A range of methods has been developed to approach this task, each with its own idiosyncrasies, approximations, and realm of applicability. Pe
We provide a stochastic thermodynamic description across scales for $N$ identical units with all-to-all interactions that are driven away from equilibrium by different reservoirs and external forces. We start at the microscopic level with Poisson rat
Bridging the second law of thermodynamics and microscopic reversible dynamics has been a longstanding problem in statistical physics. We here address this problem on the basis of quantum many-body physics, and discuss how the entropy production satur
We consider quantum nonlinear many-body systems with dissipation described within the Caldeira-Leggett model, i.e., by a nonlocal action in the path integral for the density matrix. Approximate classical-like formulas for thermodynamic quantities are
We consider a dynamic protocol for quantum many-body systems, which enables to study the interplay between unitary Hamiltonian driving and random local projective measurements. While the unitary dynamics tends to increase entanglement, local measurem