ﻻ يوجد ملخص باللغة العربية
This paper considers channel estimation and uplink achievable rate of the coarsely quantized massive multiple-input multiple-output (MIMO) system with radio frequency (RF) impairments. We utilize additive quantization noise model (AQNM) and extended error vector magnitude (EEVM) model to analyze the impacts of low-resolution analog-to-digital converters (ADCs) and RF impairments respectively. We show that hardware impairments cause a nonzero floor on the channel estimation error, which contraries to the conventional case with ideal hardware. The maximal-ratio combining (MRC) technique is then used at the receiver, and an approximate tractable expression for the uplink achievable rate is derived. The simulation results illustrate the appreciable compensations between ADCs resolution and RF impairments. The proposed studies support the feasibility of equipping economical coarse ADCs and economical imperfect RF components in practical massive MIMO systems.
This paper considers uplink massive multiple-input multiple-output (MIMO) systems with lowresolution analog-to-digital converters (ADCs) over Rician fading channels. Maximum-ratio-combining (MRC) and zero-forcing (ZF) receivers are considered under t
In this paper, we present a new scenario of direction of arrival (DOA) estimation using massive multiple-input multiple-output (MIMO) receive array with low-resolution analog-to-digital convertors (ADCs), which can strike a good balance between perfo
In this paper, a framework of beamspace channel estimation in millimeter wave (mmWave) massive MIMO system is proposed. The framework includes the design of hybrid precoding and combining matrix as well as the search method for the largest entry of o
We study the impact of hardware impairments at the base station (BS) of an orthogonal frequency-division multiplexing (OFDM)-based massive multiuser (MU) multiple-input multiple-output (MIMO) uplink system. We leverage Bussgangs theorem to develop ac
The requirement of high data-rate in the fifth generation wireless systems (5G) calls for the ultimate utilization of the wide bandwidth in the mmWave frequency band. Researchers seeking to compensate for mmWaves high path loss and to achieve both ga