ﻻ يوجد ملخص باللغة العربية
In this paper, we present a new scenario of direction of arrival (DOA) estimation using massive multiple-input multiple-output (MIMO) receive array with low-resolution analog-to-digital convertors (ADCs), which can strike a good balance between performance and circuit cost. Based on the linear additive quantization noise model (AQNM), the effect of low-resolution ADCs on the methods, such as Root-MUSIC method, is analyzed. Also, the closed-form expression of Cramer-Rao lower bound (CRLB) is derived to evaluate the performance loss caused by the low-resolution ADCs. The simulation results show that the Root-MUSIC methods can achieve the corresponding CRLB. Furthermore, 2-3 bits are acceptable for most applications if the 1dB performance loss.
As massive multiple-input multiple-output (MIMO) becomes popular, direction of arrival (DOA) measurement has been made a real renaissance due to the high-resolution achieved. Thus, there is no doubt about DOA estimation using massive MIMO. The purpos
A large-scale fully-digital receive antenna array can provide very high-resolution direction of arrival (DOA) estimation, but resulting in a significantly high RF-chain circuit cost. Thus, a hybrid analog and digital (HAD) structure is preferred. Two
Due to the power consumption and high circuit cost in antenna arrays, the practical application of massive multipleinput multiple-output (MIMO) in the sixth generation (6G) and future wireless networks is still challenging. Employing lowresolution an
High hardware cost and high power consumption of massive multiple-input and multiple output (MIMO) are still two challenges for the future wireless communications including beyond 5G. Adopting the low-resolution analog-to-digital converter (ADC) is v
In order to reduce hardware complexity and power consumption, massive multiple-input multiple-output (MIMO) systems employ low-resolution analog-to-digital converters (ADCs) to acquire quantized measurements $boldsymbol y$. This poses new challenges