ترغب بنشر مسار تعليمي؟ اضغط هنا

Protocol for reading out Majorana vortex qubit and testing non-Abelian statistics

57   0   0.0 ( 0 )
 نشر من قبل Chun-Xiao Liu
 تاريخ النشر 2019
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The successful test of non-Abelian statistics not only serves as a milestone in fundamental physics but also provides a quantum gate operation in topological quantum computation. An accurate and efficient readout scheme of a topological qubit is an essential step toward the experimental confirmation of non-Abelian statistics. In the current work, we propose a protocol to read out the quantum state of a Majorana vortex qubit on a topological superconductor island. The protocol consists of four Majorana zero modes trapped in spatially well-separated vortex cores on the two-dimensional surface of a Coulomb blockaded topological superconductor. Our proposed measurement is implemented by a pair of weakly coupled Majorana modes separately in touch with two normal metal leads, and the readout is realized by observing the conductance peak location in terms of gate voltage. Using this protocol, we can further test the non-Abelian statistics of Majorana zero modes in the two-dimensional platform. A successful readout of Majorana qubit is a crucial step towards the future application of topological quantum computation. In addition, this Coulomb blockaded setup can distinguish Majorana zero modes from Caroli-de Gennes-Matricon modes in vortex cores.


قيم البحث

اقرأ أيضاً

Symmetry-protected topological superconductors (TSCs) can host multiple Majorana zero modes (MZMs) at their edges or vortex cores, while whether the Majorana braiding in such systems is non-Abelian in general remains an open question. Here we uncover in theory the unitary symmetry-protected non-Abelian statisitcs of MZMs and propose the experimental realization. We show that braiding two vortices with each hosting $N$ unitary symmetry-protected MZMs generically reduces to $N$ independent sectors, with each sector braiding two different Majorana modes. This renders the unitary symmetry-protected non-Abelian statistics. As a concrete example, we demonstrate the proposed non-Abelian statistics in a spin-triplet TSC which hosts two MZMs at each vortex and, interestingly, can be precisely mapped to a quantum anomalous Hall insulator. Thus the unitary symmetry-protected non-Abelian statistics can be verified in the latter insulating phase, with the application to realizing various topological quantum gates being studied. Finally, we propose a novel experimental scheme to realize the present study in an optical Raman lattice. Our work opens a new route for Majorana-based topological quantum computation.
In condensed matter physics, non-Abelian statistics for Majorana zero modes (or Majorana Fermions) is very important, really exotic, and completely robust. The race for searching Majorana zero modes and verifying the corresponding non-Abelian statist ics becomes an important frontier in condensed matter physics. In this letter, we generalize the Majorana zero modes to non-Hermitian (NH) topological systems that show universal but quite different properties from their Hermitian counterparts. Based on the NH Majorana zero modes, the orthogonal and nonlocal Majorana qubits are well defined. In particular, the non-Abelian statistics for these NH Majorana zero modes become anomalous, which is different from the usual non-Abelian statistics. The usual Ivanovs braiding operator for two Majorana modes is generalized to a non-Hermitian Ivanovs braiding perator. The one-dimensional NH Kitaev model is taken as an example to numerically verify the anomalous non-Abelian statistics for two NH Majorana zero modes. The numerical results are exactly consistent with the theoretical prediction. With the help of braiding these two zero modes, the $pi/8$ gate can be reached and thus universal topological quantum computation becomes possible.
In this paper, we numerically study the non-Abelian statistics of the zero-energy Majorana fermions on the end of Majorana chain and show its application to quantum computing by mapping it to a spin model with special symmetry. In particular, by usin g transverse-field Ising model with Z2 symmetry, we verify the nontrivial non-Abelian statistics of Majorana fermions. Numerical evidence and comparison in both Majorana-representation and spin-representation are presented. The degenerate ground states of a symmetry protected spin chain therefore previde a promising platform for topological quantum computation.
355 - Ming Gong , Yijia Wu , Hua Jiang 2021
Motivated by the recent experiments that reported the discovery of vortex Majorana bound states (vMBSs) in iron-based superconductors, we establish a portable scheme to unveil the non-Abelian statistics of vMBSs using normal fermionic modes. The uniq ue non-Abelian statistics of vMBSs is characterized by the charge flip signal of the fermions that can be easily read out through the charge sensing measurement. In particular, the charge flip signal will be significantly suppressed for strong hybridized vMBSs or trivial vortex modes, which efficiently identifies genuine vMBSs. To eliminate the error induced by the unnecessary dynamical evolution of the fermionic modes, we further propose a correction strategy by continually reversing the energy of the fermions, reminiscent of the quantum Zeno effect. Finally, we establish a feasible protocol to perform non-Abelian braiding operations on vMBSs.
We investigate the non-adiabatic processes occurring during the manipulations of Majorana qubits in 1-D semiconducting wires with proximity induced superconductivity. Majorana qubits are usually protected by the excitation gap. Yet, manipulations per formed at a finite pace can introduce both decoherence and renormalization effects. Though exponentially small for slow manipulations, these effects are important as they may constitute the ultimate decoherence mechanism. Moreover, as adiabatic topological manipulations fail to produce a universal set of quantum gates, non-adiabatic manipulations might be necessary to perform quantum computation.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا