ترغب بنشر مسار تعليمي؟ اضغط هنا

Non-adiabatic processes in Majorana qubit systems

73   0   0.0 ( 0 )
 نشر من قبل Alexander Shnirman
 تاريخ النشر 2013
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We investigate the non-adiabatic processes occurring during the manipulations of Majorana qubits in 1-D semiconducting wires with proximity induced superconductivity. Majorana qubits are usually protected by the excitation gap. Yet, manipulations performed at a finite pace can introduce both decoherence and renormalization effects. Though exponentially small for slow manipulations, these effects are important as they may constitute the ultimate decoherence mechanism. Moreover, as adiabatic topological manipulations fail to produce a universal set of quantum gates, non-adiabatic manipulations might be necessary to perform quantum computation.

قيم البحث

اقرأ أيضاً

198 - Diego Rainis , Daniel Loss 2012
We consider the problem of quasiparticle poisoning in a nanowire-based realization of a Majorana qubit, where a spin-orbit-coupled semiconducting wire is placed on top of a (bulk) superconductor. By making use of recent experimental data exhibiting e vidence of a low-temperature residual non-equilibrium quasiparticle population in superconductors, we show by means of analytical and numerical calculations that the dephasing time due to the tunneling of quasiparticles into the nanowire may be problematically short to allow for qubit manipulation.
The combination of two-dimensional Dirac surface states with s-wave superconductivity is expected to generate localized topological Majorana zero modes in vortex cores. Putative experimental signatures of these modes have been reported for heterostru ctures of proximitized topological insulators, iron-based superconductors or certain transition metal dichalcogenides. Despite these efforts, the Majorana nature of the observed excitation is still under debate. We propose to identify the presence of Majorana vortex modes using a non-local transport measurement protocol originally proposed for one-dimensional settings. In the case of an isolated subgap state, the protocol provides a spatial map of the ratio of local charge- and probability-density which offers a clear distinction between Majorana and ordinary fermionic modes. We show that these distinctive features survive in the experimentally relevant case of hybridizing vortex core modes.
Coupling Majorana fermion excitations to coherent external fields is an important stage towards their manipulation and detection. We analyse the charge and transmon regimes of a topological nano-wire embedded within a Cooper-Pair-Box, where the super conducting phase difference is coupled to the zero energy parity states that arise from Majorana quasi-particles. We show that at special gate bias points, the photon-qubit coupling can be switched off via quantum interference, and in other points it is exponentially dependent on the control parameter $E_J/E_C$. As well as a probe for topological-superconductor excitations, we propose that this type of device could be used to realise a tunable high coherence four-level system in the superconducting circuits architecture.
113 - P. Yu , J. Chen , M. Gomanko 2020
Conductance at zero source-drain voltage bias in InSb nanowire/NbTiN superconductor devices exhibits peaks that are close to a quantized value of $2e^2/h$. The nearly quantized resonances evolve in the tunnel barrier strength, magnetic field and magn etic field orientation in a way consistent with Majorana zero modes. Our devices feature two tunnel probes on both ends of the nanowire separated by a 400 nm nanowire segment covered by the superconductor. We only find nearly quantized zero bias peaks localized to one end of the nanowire, while conductance dips are observed for the same parameters on the other end. This undermines the Majorana explanation as Majorana modes must come in pairs. We do identify states delocalized from end to end near zero magnetic field and at higher electron density, which is not in the basic Majorana regime. We lay out procedures for assessing the nonlocality of subgap wavefunctions and provide a classification of nanowire bound states based on their localization.
Topological Majorana fermion (MF) quasiparticles have been recently suggested to exist in semiconductor quantum wires with proximity induced superconductivity and a Zeeman field. Although the experimentally observed zero bias tunneling peak and a fra ctional ac-Josephson effect can be taken as necessary signatures of MFs, neither of them constitutes a sufficient smoking gun experiment. Since one pair of Majorana fermions share a single conventional fermionic degree of freedom, MFs are in a sense fractionalized excitations. Based on this fractionalization we propose a tunneling experiment that furnishes a nearly unique signature of end state MFs in semiconductor quantum wires. In particular, we show that a teleportation-like experiment is not enough to distinguish MFs from pairs of MFs, which are equivalent to conventional zero energy states, but our proposed tunneling experiment, in principle, can make this distinction.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا