ﻻ يوجد ملخص باللغة العربية
In this paper, we numerically study the non-Abelian statistics of the zero-energy Majorana fermions on the end of Majorana chain and show its application to quantum computing by mapping it to a spin model with special symmetry. In particular, by using transverse-field Ising model with Z2 symmetry, we verify the nontrivial non-Abelian statistics of Majorana fermions. Numerical evidence and comparison in both Majorana-representation and spin-representation are presented. The degenerate ground states of a symmetry protected spin chain therefore previde a promising platform for topological quantum computation.
Symmetry-protected topological superconductors (TSCs) can host multiple Majorana zero modes (MZMs) at their edges or vortex cores, while whether the Majorana braiding in such systems is non-Abelian in general remains an open question. Here we uncover
The non-Abelian braiding of Majorana fermions is one of the most promising operations providing a key building block for the realization of topological quantum computation. Recently, the chiral Majorana fermions were observed in a hybrid junction btw
Multiple zero-energy Majorana fermions (MFs) with spatially overlapping wave functions can survive only if their splitting is prevented by an underlying symmetry. Here we show that, in quasi-one-dimensional (Q1D) time reversal invariant topological s
Landaus spontaneous symmetry breaking theory is a fundamental theory that describes the collective behaviors in many-body systems. It was well known that for usual spontaneous symmetry breaking in Hermitian systems, the order-disorder phase transitio
We study the dynamical process of braiding Majorana bound states in the presence of the coupling to photons in a microwave cavity. We show theoretically that the $pi/4$ phase associated with the braiding of Majoranas, as well as the parity of the gro