ترغب بنشر مسار تعليمي؟ اضغط هنا

A volatility-of-volatility expansion of the option prices in the SABR stochastic volatility model

101   0   0.0 ( 0 )
 نشر من قبل Victor Nistor
 تاريخ النشر 2018
  مجال البحث مالية
والبحث باللغة English




اسأل ChatGPT حول البحث

We propose a general, very fast method to quickly approximate the solution of a parabolic Partial Differential Equation (PDEs) with explicit formulas. Our method also provides equaly fast approximations of the derivatives of the solution, which is a challenge for many other methods. Our approach is based on a computable series expansion in terms of a small parameter. As an example, we treat in detail the important case of the SABR PDE for $beta = 1$, namely $partial_{tau}u = sigma^2 big [ frac{1}{2} (partial^2_xu - partial_xu) + u rho partial_xpartial_sigma u + frac{1}{2} u^2 partial^2_sigma u , big ] + kappa (theta - sigma) partial_sigma$, by choosing $ u$ as small parameter. This yields $u = u_0 + u u_1 + u^2 u_2 + ldots$, with $u_j$ independent of $ u$. The terms $u_j$ are explicitly computable, which is also a challenge for many other, related methods. Truncating this expansion leads to computable approximations of $u$ that are in closed form, and hence can be evaluated very quickly. Most of the other related methods use the time $tau$ as a small parameter. The advantage of our method is that it leads to shorter and hence easier to determine and to generalize formulas. We obtain also an explicit expansion for the implied volatility in the SABR model in terms of $ u$, similar to Hagans formula, but including also the {em mean reverting term.} We provide several numerical tests that show the performance of our method. In particular, we compare our formula to the one due to Hagan. Our results also behave well when used for actual market data and show the mean reverting property of the volatility.



قيم البحث

اقرأ أيضاً

In the present paper, a decomposition formula for the call price due to Al`{o}s is transformed into a Taylor type formula containing an infinite series with stochastic terms. The new decomposition may be considered as an alternative to the decomposit ion of the call price found in a recent paper of Al`{o}s, Gatheral and Radoiv{c}i{c}. We use the new decomposition to obtain various approximations to the call price in the Heston model with sharper estimates of the error term than in the previously known approximations. One of the formulas obtained in the present paper has five significant terms and an error estimate of the form $O( u^{3}(left|rhoright|+ u))$, where $ u$ is the vol-vol parameter, and $rho$ is the correlation coefficient between the price and the volatility in the Heston model. Another approximation formula contains seven more terms and the error estimate is of the form $O( u^4(1+|rho|)$. For the uncorrelated Hestom model ($rho=0$), we obtain a formula with four significant terms and an error estimate $O( u^6)$. Numerical experiments show that the new approximations to the call price perform especially well in the high volatility mode.
418 - Alexandre F. Roch 2008
In this paper, we study the valuation of American type derivatives in the stochastic volatility model of Barndorff-Nielsen and Shephard (2001). We characterize the value of such derivatives as the unique viscosity solution of an integral-partial diff erential equation when the payoff function satisfies a Lipschitz condition.
In the classical model of stock prices which is assumed to be Geometric Brownian motion, the drift and the volatility of the prices are held constant. However, in reality, the volatility does vary. In quantitative finance, the Heston model has been s uccessfully used where the volatility is expressed as a stochastic differential equation. In addition, we consider a regime switching model where the stock volatility dynamics depends on an underlying process which is possibly a non-Markov pure jump process. Under this model assumption, we find the locally risk minimizing pricing of European type vanilla options. The price function is shown to satisfy a Heston type PDE.
We consider explicit approximations for European put option prices within the Stochastic Verhulst model with time-dependent parameters, where the volatility process follows the dynamics $dV_t = kappa_t (theta_t - V_t) V_t dt + lambda_t V_t dB_t$. Our methodology involves writing the put option price as an expectation of a Black-Scholes formula, reparameterising the volatility process and then performing a number of expansions. The difficulties faced are computing a number of expectations induced by the expansion procedure explicitly. We do this by appealing to techniques from Malliavin calculus. Moreover, we deduce that our methodology extends to models with more general drift and diffusion coefficients for the volatility process. We obtain the explicit representation of the form of the error generated by the expansion procedure, and we provide sufficient ingredients in order to obtain a meaningful bound. Under the assumption of piecewise-constant parameters, our approximation formulas become closed-form, and moreover we are able to establish a fast calibration scheme. Furthermore, we perform a numerical sensitivity analysis to investigate the quality of our approximation formula in the Stochastic Verhulst model, and show that the errors are well within the acceptable range for application purposes.
This paper presents an algorithm for a complete and efficient calibration of the Heston stochastic volatility model. We express the calibration as a nonlinear least squares problem. We exploit a suitable representation of the Heston characteristic fu nction and modify it to avoid discontinuities caused by branch switchings of complex functions. Using this representation, we obtain the analytical gradient of the price of a vanilla option with respect to the model parameters, which is the key element of all variants of the objective function. The interdependency between the components of the gradient enables an efficient implementation which is around ten times faster than a numerical gradient. We choose the Levenberg-Marquardt method to calibrate the model and do not observe multiple local minima reported in previous research. Two-dimensional sections show that the objective function is shaped as a narrow valley with a flat bottom. Our method is the fastest calibration of the Heston model developed so far and meets the speed requirement of practical trading.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا