ﻻ يوجد ملخص باللغة العربية
In this paper, a new numerical method based on adaptive gradient descent optimizers is provided for computing the implied volatility from the Black-Scholes (B-S) option pricing model. It is shown that the new method is more accurate than the close form approximation. Compared with the Newton-Raphson method, the new method obtains a reliable rate of convergence and tends to be less sensitive to the beginning point.
We derive a backward and forward nonlinear PDEs that govern the implied volatility of a contingent claim whenever the latter is well-defined. This would include at least any contingent claim written on a positive stock price whose payoff at a possibl
We present a strikingly simple proof that two rules are sufficient to automate gradient descent: 1) dont increase the stepsize too fast and 2) dont overstep the local curvature. No need for functional values, no line search, no information about the
We propose a general, very fast method to quickly approximate the solution of a parabolic Partial Differential Equation (PDEs) with explicit formulas. Our method also provides equaly fast approximations of the derivatives of the solution, which is a
We study the shapes of the implied volatility when the underlying distribution has an atom at zero and analyse the impact of a mass at zero on at-the-money implied volatility and the overall level of the smile. We further show that the behaviour at s
We propose a hybrid method for generating arbitrage-free implied volatility (IV) surfaces consistent with historical data by combining model-free Variational Autoencoders (VAEs) with continuous time stochastic differential equation (SDE) driven model