ﻻ يوجد ملخص باللغة العربية
Fluctuation dissipation theorems connect the linear response of a physical system to a perturbation to the steady-state correlation functions. Until now, most of these theorems have been derived for finite-dimensional systems. However, many relevant physical processes are described by systems of infinite dimension in the Gaussian regime. In this work, we find a linear response theory for quantum Gaussian systems subject to time dependent Gaussian channels. In particular, we establish a fluctuation dissipation theorem for the covariance matrix that connects its linear response at any time to the steady state two-time correlations. The theorem covers non-equilibrium scenarios as it does not require the steady state to be at thermal equilibrium. We further show how our results simplify the study of Gaussian systems subject to a time dependent Lindbladian master equation. Finally, we illustrate the usage of our new scheme through some examples. Due to broad generality of the Gaussian formalism, we expect our results to find an application in many physical platforms, such as opto-mechanical systems in the presence of external noise or driven quantum heat devices.
In this work, we show that a universal quantum work relation for a quantum system driven arbitrarily far from equilibrium extend to $mathcal{PT}$-symmetric quantum system with unbroken $mathcal{PT}$ symmetry, which is a consequence of microscopic rev
We extend Kubos Linear Response Theory (LRT) to periodic input signals with arbitrary shapes and obtain exact analytical formulas for the energy dissipated by the system for a variety of signals. These include the square and sawtooth waves, or pulsed
Activated surface diffusion with interacting adsorbates is analyzed within the Linear Response Theory framework. The so-called interacting single adsorbate model is justified by means of a two-bath model, where one harmonic bath takes into account th
A universal quantum work relation is proved for isolated time-dependent Hamiltonian systems in a magnetic field as the consequence of microreversibility. This relation involves a functional of an arbitrary observable. The quantum Jarzynski equality i
We present a general approach to describe slowly driven quantum systems both in real and imaginary time. We highlight many similarities, qualitative and quantitative, between real and imaginary time evolution. We discuss how the metric tensor and the