ﻻ يوجد ملخص باللغة العربية
We present a general approach to describe slowly driven quantum systems both in real and imaginary time. We highlight many similarities, qualitative and quantitative, between real and imaginary time evolution. We discuss how the metric tensor and the Berry curvature can be extracted from both real and imaginary time simulations as a response of physical observables. For quenches ending at or near the quantum critical point, we show the utility of the scaling theory for detecting the location of the quantum critical point by comparing sweeps at different velocities. We briefly discuss the universal relaxation to equilibrium of systems after a quench. We finally review recent developments of quantum Monte Carlo methods for studying imaginary-time evolution. We illustrate our findings with explicit calculations using the transverse field Ising model in one dimension.
The problem of calculating real-time correlation functions is formulated in terms of an imaginary-time partial differential equation. The latter is solved analytically for the perturbed harmonic oscillator and compared with the known exact result. Th
In this work, we show that a universal quantum work relation for a quantum system driven arbitrarily far from equilibrium extend to $mathcal{PT}$-symmetric quantum system with unbroken $mathcal{PT}$ symmetry, which is a consequence of microscopic rev
Fluctuation dissipation theorems connect the linear response of a physical system to a perturbation to the steady-state correlation functions. Until now, most of these theorems have been derived for finite-dimensional systems. However, many relevant
Reaction-diffusion systems which include processes of the form A+A->A or A+A->0 are characterised by the appearance of `imaginary multiplicative noise terms in an effective Langevin-type description. However, if `real as well as `imaginary noise is p
The emph{ab initio} path integral Monte Carlo (PIMC) approach is one of the most successful methods in quantum many-body theory. A particular strength of this method is its straightforward access to imaginary-time correlation functions (ITCF). For ex