ترغب بنشر مسار تعليمي؟ اضغط هنا

Fragile Complexity of Comparison-Based Algorithms

66   0   0.0 ( 0 )
 نشر من قبل Manuel Penschuck
 تاريخ النشر 2019
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

We initiate a study of algorithms with a focus on the computational complexity of individual elements, and introduce the fragile complexity of comparison-based algorithms as the maximal number of comparisons any individual element takes part in. We give a number of upper and lower bounds on the fragile complexity for fundamental problems, including Minimum, Selection, Sorting and Heap Construction. The results include both deterministic and randomized upper and lower bounds, and demonstrate a separation between the two settings for a number of problems. The depth of a comparator network is a straight-forward upper bound on the worst case fragile complexity of the corresponding fragile algorithm. We prove that fragile complexity is a different and strictly easier property than the depth of comparator networks, in the sense that for some problems a fragile complexity equal to the best network depth can be achieved with less total work and that with randomization, even a lower fragile complexity is possible.



قيم البحث

اقرأ أيضاً

The fragile complexity of a comparison-based algorithm is $f(n)$ if each input element participates in $O(f(n))$ comparisons. In this paper, we explore the fragile complexity of algorithms adaptive to various restrictions on the input, i.e., algorith ms with a fragile complexity parameterized by a quantity other than the input size n. We show that searching for the predecessor in a sorted array has fragile complexity ${Theta}(log k)$, where $k$ is the rank of the query element, both in a randomized and a deterministic setting. For predecessor searches, we also show how to optimally reduce the amortized fragile complexity of the elements in the array. We also prove the following results: Selecting the $k$-th smallest element has expected fragile complexity $O(log log k)$ for the element selected. Deterministically finding the minimum element has fragile complexity ${Theta}(log(Inv))$ and ${Theta}(log(Runs))$, where $Inv$ is the number of
This paper initiates the study of I/O algorithms (minimizing cache misses) from the perspective of fine-grained complexity (conditional polynomial lower bounds). Specifically, we aim to answer why sparse graph problems are so hard, and why the Longes t Common Subsequence problem gets a savings of a factor of the size of cache times the length of a cache line, but no more. We take the reductions and techniques from complexity and fine-grained complexity and apply them to the I/O model to generate new (conditional) lower bounds as well as faster algorithms. We also prove the existence of a time hierarchy for the I/O model, which motivates the fine-grained reductions. Using fine-grained reductions, we give an algorithm for distinguishing 2 vs. 3 diameter and radius that runs in $O(|E|^2/(MB))$ cache misses, which for sparse graphs improves over the previous $O(|V|^2/B)$ running time. We give new reductions from radius and diameter to Wiener index and median. We show meaningful reductions between problems that have linear-time solutions in the RAM model. The reductions use low I/O complexity (typically $O(n/B)$), and thus help to finely capture the relationship between I/O linear time $Theta(n/B)$ and RAM linear time $Theta(n)$. We generate new I/O assumptions based on the difficulty of improving sparse graph problem running times in the I/O model. We create conjectures that the current best known algorithms for Single Source Shortest Paths (SSSP), diameter, and radius are optimal. From these I/O-model assumptions, we show that many of the known reductions in the word-RAM model can naturally extend to hold in the I/O model as well (e.g., a lower bound on the I/O complexity of Longest Common Subsequence that matches the best known running time). Finally, we prove an analog of the Time Hierarchy Theorem in the I/O model.
We study the space complexity of solving the bias-regularized SVM problem in the streaming model. This is a classic supervised learning problem that has drawn lots of attention, including for developing fast algorithms for solving the problem approxi mately. One of the most widely used algorithms for approximately optimizing the SVM objective is Stochastic Gradient Descent (SGD), which requires only $O(frac{1}{lambdaepsilon})$ random samples, and which immediately yields a streaming algorithm that uses $O(frac{d}{lambdaepsilon})$ space. For related problems, better streaming algorithms are only known for smooth functions, unlike the SVM objective that we focus on in this work. We initiate an investigation of the space complexity for both finding an approximate optimum of this objective, and for the related ``point estimation problem of sketching the data set to evaluate the function value $F_lambda$ on any query $(theta, b)$. We show that, for both problems, for dimensions $d=1,2$, one can obtain streaming algorithms with space polynomially smaller than $frac{1}{lambdaepsilon}$, which is the complexity of SGD for strongly convex functions like the bias-regularized SVM, and which is known to be tight in general, even for $d=1$. We also prove polynomial lower bounds for both point estimation and optimization. In particular, for point estimation we obtain a tight bound of $Theta(1/sqrt{epsilon})$ for $d=1$ and a nearly tight lower bound of $widetilde{Omega}(d/{epsilon}^2)$ for $d = Omega( log(1/epsilon))$. Finally, for optimization, we prove a $Omega(1/sqrt{epsilon})$ lower bound for $d = Omega( log(1/epsilon))$, and show similar bounds when $d$ is constant.
The priority model of greedy-like algorithms was introduced by Borodin, Nielsen, and Rackoff in 2002. We augment this model by allowing priority algorithms to have access to advice, i.e., side information precomputed by an all-powerful oracle. Obtain ing lower bounds in the priority model without advice can be challenging and may involve intricate adversary arguments. Since the priority model with advice is even more powerful, obtaining lower bounds presents additional difficulties. We sidestep these difficulties by developing a general framework of reductions which makes lower bound proofs relatively straightforward and routine. We start by introducing the Pair Matching problem, for which we are able to prove strong lower bounds in the priority model with advice. We develop a template for constructing a reduction from Pair Matching to other problems in the priority model with advice -- this part is technically challenging since the reduction needs to define a valid priority function for Pair Matching while respecting the priority function for the other problem. Finally, we apply the template to obtain lower bounds for a number of standard discrete optimization problems.
We investigate the parameterized complexity in $a$ and $b$ of determining whether a graph~$G$ has a subset of $a$ vertices and $b$ edges whose removal disconnects $G$, or disconnects two prescribed vertices $s, t in V(G)$.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا