ﻻ يوجد ملخص باللغة العربية
The priority model of greedy-like algorithms was introduced by Borodin, Nielsen, and Rackoff in 2002. We augment this model by allowing priority algorithms to have access to advice, i.e., side information precomputed by an all-powerful oracle. Obtaining lower bounds in the priority model without advice can be challenging and may involve intricate adversary arguments. Since the priority model with advice is even more powerful, obtaining lower bounds presents additional difficulties. We sidestep these difficulties by developing a general framework of reductions which makes lower bound proofs relatively straightforward and routine. We start by introducing the Pair Matching problem, for which we are able to prove strong lower bounds in the priority model with advice. We develop a template for constructing a reduction from Pair Matching to other problems in the priority model with advice -- this part is technically challenging since the reduction needs to define a valid priority function for Pair Matching while respecting the priority function for the other problem. Finally, we apply the template to obtain lower bounds for a number of standard discrete optimization problems.
The priority model was introduced by Borodin, Rackoff, and Nielsen (2003) to capture greedy-like algorithms. Motivated by the success of advice complexity in the area of online algorithms, Borodin et al. (2020) extended the fixed priority model to in
In the Priority Steiner Tree (PST) problem, we are given an undirected graph $G=(V,E)$ with a source $s in V$ and terminals $T subseteq V setminus {s}$, where each terminal $v in T$ requires a nonnegative priority $P(v)$. The goal is to compute a min
The fragile complexity of a comparison-based algorithm is $f(n)$ if each input element participates in $O(f(n))$ comparisons. In this paper, we explore the fragile complexity of algorithms adaptive to various restrictions on the input, i.e., algorith
We initiate a study of algorithms with a focus on the computational complexity of individual elements, and introduce the fragile complexity of comparison-based algorithms as the maximal number of comparisons any individual element takes part in. We g
The bin covering problem asks for covering a maximum number of bins with an online sequence of $n$ items of different sizes in the range $(0,1]$; a bin is said to be covered if it receives items of total size at least 1. We study this problem in the