ﻻ يوجد ملخص باللغة العربية
We investigate the parameterized complexity in $a$ and $b$ of determining whether a graph~$G$ has a subset of $a$ vertices and $b$ edges whose removal disconnects $G$, or disconnects two prescribed vertices $s, t in V(G)$.
Cut problems form one of the most fundamental classes of problems in algorithmic graph theory. For instance, the minimum cut, the minimum $s$-$t$ cut, the minimum multiway cut, and the minimum $k$-way cut are some of the commonly encountered cut prob
We study the query complexity of determining if a graph is connected with global queries. The first model we look at is matrix-vector multiplication queries to the adjacency matrix. Here, for an $n$-vertex graph with adjacency matrix $A$, one can que
We study the space complexity of solving the bias-regularized SVM problem in the streaming model. This is a classic supervised learning problem that has drawn lots of attention, including for developing fast algorithms for solving the problem approxi
A directed graph $D$ is semicomplete if for every pair $x,y$ of vertices of $D,$ there is at least one arc between $x$ and $y.$ viol{Thus, a tournament is a semicomplete digraph.} In the Directed Component Order Connectivity (DCOC) problem, given a d
We consider the problem of scattering $n$ robots in a two dimensional continuous space. As this problem is impossible to solve in a deterministic manner, all solutions must be probabilistic. We investigate the amount of randomness (that is, the numbe