ترغب بنشر مسار تعليمي؟ اضغط هنا

Problem Formulation and Fairness

88   0   0.0 ( 0 )
 نشر من قبل Solon Barocas
 تاريخ النشر 2019
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

Formulating data science problems is an uncertain and difficult process. It requires various forms of discretionary work to translate high-level objectives or strategic goals into tractable problems, necessitating, among other things, the identification of appropriate target variables and proxies. While these choices are rarely self-evident, normative assessments of data science projects often take them for granted, even though different translations can raise profoundly different ethical concerns. Whether we consider a data science project fair often has as much to do with the formulation of the problem as any property of the resulting model. Building on six months of ethnographic fieldwork with a corporate data science team---and channeling ideas from sociology and history of science, critical data studies, and early writing on knowledge discovery in databases---we describe the complex set of actors and activities involved in problem formulation. Our research demonstrates that the specification and operationalization of the problem are always negotiated and elastic, and rarely worked out with explicit normative considerations in mind. In so doing, we show that careful accounts of everyday data science work can help us better understand how and why data science problems are posed in certain ways---and why specific formulations prevail in practice, even in the face of what might seem like normatively preferable alternatives. We conclude by discussing the implications of our findings, arguing that effective normative interventions will require attending to the practical work of problem formulation.



قيم البحث

اقرأ أيضاً

We propose measurement modeling from the quantitative social sciences as a framework for understanding fairness in computational systems. Computational systems often involve unobservable theoretical constructs, such as socioeconomic status, teacher e ffectiveness, and risk of recidivism. Such constructs cannot be measured directly and must instead be inferred from measurements of observable properties (and other unobservable theoretical constructs) thought to be related to them -- i.e., operationalized via a measurement model. This process, which necessarily involves making assumptions, introduces the potential for mismatches between the theoretical understanding of the construct purported to be measured and its operationalization. We argue that many of the harms discussed in the literature on fairness in computational systems are direct results of such mismatches. We show how some of these harms could have been anticipated and, in some cases, mitigated if viewed through the lens of measurement modeling. To do this, we contribute fairness-oriented conceptualizations of construct reliability and construct validity that unite traditions from political science, education, and psychology and provide a set of tools for making explicit and testing assumptions about constructs and their operationalizations. We then turn to fairness itself, an essentially contested construct that has different theoretical understandings in different contexts. We argue that this contestedness underlies recent debates about fairness definitions: although these debates appear to be about different operationalizations, they are, in fact, debates about different theoretical understandings of fairness. We show how measurement modeling can provide a framework for getting to the core of these debates.
In this paper, we critically examine the effectiveness of the requirement to conduct a Data Protection Impact Assessment (DPIA) in Article 35 of the General Data Protection Regulation (GDPR) in light of fairness metrics. Through this analysis, we exp lore the role of the fairness principle as introduced in Article 5(1)(a) and its multifaceted interpretation in the obligation to conduct a DPIA. Our paper argues that although there is a significant theoretical role for the considerations of fairness in the DPIA process, an analysis of the various guidance documents issued by data protection authorities on the obligation to conduct a DPIA reveals that they rarely mention the fairness principle in practice.
It is well understood that a system built from individually fair components may not itself be individually fair. In this work, we investigate individual fairness under pipeline composition. Pipelines differ from ordinary sequential or repeated compos ition in that individuals may drop out at any stage, and classification in subsequent stages may depend on the remaining cohort of individuals. As an example, a company might hire a team for a new project and at a later point promote the highest performer on the team. Unlike other repeated classification settings, where the degree of unfairness degrades gracefully over multiple fair steps, the degree of unfairness in pipelines can be arbitrary, even in a pipeline with just two stages. Guided by a panoply of real-world examples, we provide a rigorous framework for evaluating different types of fairness guarantees for pipelines. We show that na{i}ve auditing is unable to uncover systematic unfairness and that, in order to ensure fairness, some form of dependence must exist between the design of algorithms at different stages in the pipeline. Finally, we provide constructions that permit flexibility at later stages, meaning that there is no need to lock in the entire pipeline at the time that the early stage is constructed.
Using the concept of principal stratification from the causal inference literature, we introduce a new notion of fairness, called principal fairness, for human and algorithmic decision-making. The key idea is that one should not discriminate among in dividuals who would be similarly affected by the decision. Unlike the existing statistical definitions of fairness, principal fairness explicitly accounts for the fact that individuals can be impacted by the decision. We propose an axiomatic assumption that all groups are created equal. This assumption is motivated by a belief that protected attributes such as race and gender should have no direct causal effects on potential outcomes. Under this assumption, we show that principal fairness implies all three existing statistical fairness criteria once we account for relevant covariates. This result also highlights the essential role of conditioning covariates in resolving the previously recognized tradeoffs between the existing statistical fairness criteria. Finally, we discuss how to empirically choose conditioning covariates and then evaluate the principal fairness of a particular decision.
Conventional algorithmic fairness is West-centric, as seen in its sub-groups, values, and methods. In this paper, we de-center algorithmic fairness and analyse AI power in India. Based on 36 qualitative interviews and a discourse analysis of algorith mic deployments in India, we find that several assumptions of algorithmic fairness are challenged. We find that in India, data is not always reliable due to socio-economic factors, ML makers appear to follow double standards, and AI evokes unquestioning aspiration. We contend that localising model fairness alone can be window dressing in India, where the distance between models and oppressed communities is large. Instead, we re-imagine algorithmic fairness in India and provide a roadmap to re-contextualise data and models, empower oppressed communities, and enable Fair-ML ecosystems.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا