ترغب بنشر مسار تعليمي؟ اضغط هنا

Individual Fairness in Pipelines

187   0   0.0 ( 0 )
 نشر من قبل Meena Jagadeesan
 تاريخ النشر 2020
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

It is well understood that a system built from individually fair components may not itself be individually fair. In this work, we investigate individual fairness under pipeline composition. Pipelines differ from ordinary sequential or repeated composition in that individuals may drop out at any stage, and classification in subsequent stages may depend on the remaining cohort of individuals. As an example, a company might hire a team for a new project and at a later point promote the highest performer on the team. Unlike other repeated classification settings, where the degree of unfairness degrades gracefully over multiple fair steps, the degree of unfairness in pipelines can be arbitrary, even in a pipeline with just two stages. Guided by a panoply of real-world examples, we provide a rigorous framework for evaluating different types of fairness guarantees for pipelines. We show that na{i}ve auditing is unable to uncover systematic unfairness and that, in order to ensure fairness, some form of dependence must exist between the design of algorithms at different stages in the pipeline. Finally, we provide constructions that permit flexibility at later stages, meaning that there is no need to lock in the entire pipeline at the time that the early stage is constructed.

قيم البحث

اقرأ أيضاً

We give a local search based algorithm for $k$-median and $k$-means (and more generally for any $k$-clustering with $ell_p$ norm cost function) from the perspective of individual fairness. More precisely, for a point $x$ in a point set $P$ of size $n $, let $r(x)$ be the minimum radius such that the ball of radius $r(x)$ centered at $x$ has at least $n/k$ points from $P$. Intuitively, if a set of $k$ random points are chosen from $P$ as centers, every point $xin P$ expects to have a center within radius $r(x)$. An individually fair clustering provides such a guarantee for every point $xin P$. This notion of fairness was introduced in [Jung et al., 2019] where they showed how to get an approximately feasible $k$-clustering with respect to this fairness condition. In this work, we show how to get a bicriteria approximation for fair $k$-clustering: The $k$-median ($k$-means) cost of our solution is within a constant factor of the cost of an optimal fair $k$-clustering, and our solution approximately satisfies the fairness condition (also within a constant factor). Further, we complement our theoretical bounds with empirical evaluation.
Using the concept of principal stratification from the causal inference literature, we introduce a new notion of fairness, called principal fairness, for human and algorithmic decision-making. The key idea is that one should not discriminate among in dividuals who would be similarly affected by the decision. Unlike the existing statistical definitions of fairness, principal fairness explicitly accounts for the fact that individuals can be impacted by the decision. We propose an axiomatic assumption that all groups are created equal. This assumption is motivated by a belief that protected attributes such as race and gender should have no direct causal effects on potential outcomes. Under this assumption, we show that principal fairness implies all three existing statistical fairness criteria once we account for relevant covariates. This result also highlights the essential role of conditioning covariates in resolving the previously recognized tradeoffs between the existing statistical fairness criteria. Finally, we discuss how to empirically choose conditioning covariates and then evaluate the principal fairness of a particular decision.
We propose measurement modeling from the quantitative social sciences as a framework for understanding fairness in computational systems. Computational systems often involve unobservable theoretical constructs, such as socioeconomic status, teacher e ffectiveness, and risk of recidivism. Such constructs cannot be measured directly and must instead be inferred from measurements of observable properties (and other unobservable theoretical constructs) thought to be related to them -- i.e., operationalized via a measurement model. This process, which necessarily involves making assumptions, introduces the potential for mismatches between the theoretical understanding of the construct purported to be measured and its operationalization. We argue that many of the harms discussed in the literature on fairness in computational systems are direct results of such mismatches. We show how some of these harms could have been anticipated and, in some cases, mitigated if viewed through the lens of measurement modeling. To do this, we contribute fairness-oriented conceptualizations of construct reliability and construct validity that unite traditions from political science, education, and psychology and provide a set of tools for making explicit and testing assumptions about constructs and their operationalizations. We then turn to fairness itself, an essentially contested construct that has different theoretical understandings in different contexts. We argue that this contestedness underlies recent debates about fairness definitions: although these debates appear to be about different operationalizations, they are, in fact, debates about different theoretical understandings of fairness. We show how measurement modeling can provide a framework for getting to the core of these debates.
Conventional algorithmic fairness is Western in its sub-groups, values, and optimizations. In this paper, we ask how portable the assumptions of this largely Western take on algorithmic fairness are to a different geo-cultural context such as India. Based on 36 expert interviews with Indian scholars, and an analysis of emerging algorithmic deployments in India, we identify three clusters of challenges that engulf the large distance between machine learning models and oppressed communities in India. We argue that a mere translation of technical fairness work to Indian subgroups may serve only as a window dressing, and instead, call for a collective re-imagining of Fair-ML, by re-contextualising data and models, empowering oppressed communities, and more importantly, enabling ecosystems.
We propose a new family of fairness definitions for classification problems that combine some of the best properties of both statistical and individual notions of fairness. We posit not only a distribution over individuals, but also a distribution ov er (or collection of) classification tasks. We then ask that standard statistics (such as error or false positive/negative rates) be (approximately) equalized across individuals, where the rate is defined as an expectation over the classification tasks. Because we are no longer averaging over coarse groups (such as race or gender), this is a semantically meaningful individual-level constraint. Given a sample of individuals and classification problems, we design an oracle-efficient algorithm (i.e. one that is given access to any standard, fairness-free learning heuristic) for the fair empirical risk minimization task. We also show that given sufficiently many samples, the ERM solution generalizes in two directions: both to new individuals, and to new classification tasks, drawn from their corresponding distributions. Finally we implement our algorithm and empirically verify its effectiveness.

الأسئلة المقترحة

التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا