ترغب بنشر مسار تعليمي؟ اضغط هنا

Brillouin microscopy - a revolutionary tool for mechanobiology?

73   0   0.0 ( 0 )
 نشر من قبل Robert Prevedel
 تاريخ النشر 2019
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The role and importance of mechanical properties of cells and tissues in cellular function, development as well as disease has widely been acknowledged, however standard techniques currently used to assess them exhibit intrinsic limitations. Recently, a new type of optical elastography, namely Brillouin microscopy, has emerged as a non-destructive, label- and contact-free method which can probe the viscoelastic properties of biological samples with diffraction-limited resolution in 3D. This has led to increased attention amongst the biological and medical research communities, but also to debates about the interpretation and relevance of the measured physical quantities. Here, we review this emerging technology by describing the underlying biophysical principles and discussing the interpretation of Brillouin spectra arising from heterogeneous biological matter. We further elaborate on the techniques limitations as well as its potential for new insights in biology in order to guide interested researchers from various fields.



قيم البحث

اقرأ أيضاً

Over the last decade, single-molecule optical microscopy has become the gold-standard approach to decipher complex molecular processes in cellular environments. [1-3] Single-molecule fluorescence microscopy has several advantages such as ease of appl ication, high sensitivity, low invasiveness and versatility due the large number of available fluorescent probes. It bears however some drawbacks related to the poor photostability of organic dye molecules [4] and auto-fluorescent proteins [5-7] and and to the relatively large size of semiconductor nanoparticles in the context of live cell applications. [4,8,9] The overall size of the functional biomarkers is a general issue for any imaging approach because of steric hindrance effects in confined cell regions. Small red-shifted nano-emitters that are highly photostable are not currently available, while they would combine the best physical and optical penetration properties in biological tissues. Although single-molecule absorption microscopy was early used to detect single-molecules [10] at cryogenic temperatures, it is only with the advent of photothermal microscopy [11,12] that practical applications of absorption microscopy were developed in single-molecule research. Photothermal imaging (PhI)
Brillouin systems operating in the quantum regime have recently been identified as a valuable tool for quantum information technologies and fundamental science. However, reaching the quantum regime is extraordinarily challenging, owing to the stringe nt requirements of combining low thermal occupation with low optical and mechanical dissipation, and large coherent phonon-photon interactions. Here, we propose an on-chip liquid based Brillouin system that is predicted to exhibit ultra-high coherent phonon-photon coupling with exceptionally low acoustic dissipation. The system is comprised of a silicon-based slot waveguide filled with superfluid helium. This type of waveguide supports optical and acoustical traveling waves, strongly confining both fields into a subwavelength-scale mode volume. It serves as the foundation of an on-chip traveling wave Brillouin resonator with a single photon optomechanical coupling rate exceeding $240$kHz. Such devices may enable applications ranging from ultra-sensitive superfluid-based gyroscopes, to non-reciprocal optical circuits. Furthermore, this platform opens up new possibilities to explore quantum fluid dynamics in a strongly interacting condensate.
A method for time differentiation based on a Babinet-Soleil-Bravais compensator is introduced. The complex transfer function of the device is measured using polarization spectral interferometry. Time differentiation of both the pulse field and pulse envelope are demonstrated over a spectral width of about 100 THz with a measured overlap with the objective mode greater than 99.8%. This pulse shaping technique is shown to be perfectly suited to time metrology at the quantum limit.
Confocal laser scanning microscopy (CLSM) is a non-destructive, highly-efficient optical characterization method for large-area analysis of graphene on different substrates, which can be applied in ambient air, does not require additional sample prep aration, and is insusceptible to surface charging and surface contamination. CLSM leverages optical properties of graphene and provides greatly enhanced optical contrast and mapping of thickness down to a single layer. We demonstrate the effectiveness of CLSM by measuring mechanically exfoliated and chemical vapor deposition graphene on Si/SiO2, and epitaxial graphene on SiC. In the case of graphene on Si/SiO2, both CLSM intensity and height mapping is powerful for analysis of 1-5 layers of graphene. For epitaxial graphene on SiC substrates, the CLSM intensity allows us to distinguish features such as dense, parallel 150 nm wide ribbons of graphene (associated with the early stages of the growth process) and large regions covered by the interfacial layer and 1-3 layers of graphene. In both cases, CLSM data shows excellent correlation with conventional optical microscopy, atomic force microscopy, Kelvin probe force microscopy, conductive atomic force microscopy, scanning electron microscopy and Raman mapping, with a greatly reduced acquisition time. We demonstrate that CLSM is an indispensable tool for rapid analysis of mass-produced graphene and is equally relevant to other 2D materials.
We present a fast, high-throughput method for characterizing the motility of microorganisms in 3D based on standard imaging microscopy. Instead of tracking individual cells, we analyse the spatio-temporal fluctuations of the intensity in the sample f rom time-lapse images and obtain the intermediate scattering function (ISF) of the system. We demonstrate our method on two different types of microorganisms: bacteria, both smooth swimming (run only) and wild type (run and tumble) Escherichia coli, and the bi-flagellate alga Chlamydomonas reinhardtii. We validate the methodology using computer simulations and particle tracking. From the ISF, we are able to extract (i) for E. coli: the swimming speed distribution, the fraction of motile cells and the diffusivity, and (ii) for C. reinhardtii: the swimming speed distribution, the amplitude and frequency of the oscillatory dynamics. In both cases, the motility parameters are averaged over approx 10^4 cells and obtained in a few minutes.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا