ترغب بنشر مسار تعليمي؟ اضغط هنا

Small Gold Nanorods with Tunable Absorption for Photothermal Microscopy in Cells

76   0   0.0 ( 0 )
 نشر من قبل Laurent Cognet
 تاريخ النشر 2017
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Over the last decade, single-molecule optical microscopy has become the gold-standard approach to decipher complex molecular processes in cellular environments. [1-3] Single-molecule fluorescence microscopy has several advantages such as ease of application, high sensitivity, low invasiveness and versatility due the large number of available fluorescent probes. It bears however some drawbacks related to the poor photostability of organic dye molecules [4] and auto-fluorescent proteins [5-7] and and to the relatively large size of semiconductor nanoparticles in the context of live cell applications. [4,8,9] The overall size of the functional biomarkers is a general issue for any imaging approach because of steric hindrance effects in confined cell regions. Small red-shifted nano-emitters that are highly photostable are not currently available, while they would combine the best physical and optical penetration properties in biological tissues. Although single-molecule absorption microscopy was early used to detect single-molecules [10] at cryogenic temperatures, it is only with the advent of photothermal microscopy [11,12] that practical applications of absorption microscopy were developed in single-molecule research. Photothermal imaging (PhI)

قيم البحث

اقرأ أيضاً

We investigate chemo-photothermal effects of gold nanorods (GNRs) coated using mesoporous silica (mSiO2) loading doxorubicin (DOX). When the mesoporous silica layer is embedded by doxorubicin drugs, a significant change in absorption spectra enable t o quantify the drug loading. We carry out photothermal experiments on saline and livers of mice having GNRs@mSiO2 and GNRs@mSiO2-DOX. We also inject the gold nanostructures into many tumor-implanted mice and use laser illumination on some of them. By measuring weight and size of tumors, the distinct efficiency of photothermal therapy and chemotherapy on treatment is determined. We experimentally confirm the accumulation of gold nanostructures in liver.
Proximity of the metal nanoparticles enhance the plasmonic coupling and shifts the resonance. This article presents a numerical study of the photothermal effect in aggregates of small gold nanorods considering the ordered as well as random aggregates . In the ordered aggregates, there is lateral coupling which causes blueshifts in the plasmonic resonance, while in the random aggregates there are redshifts in the plasmonic resonance. The plasmon response of latter could be tailored up to the second infrared biological therapeutic window. It has been observed that the aggregates show higher absorption power and therefore, higher temperature rise compared to the single gold nanorod or monodispersive nanorods. The absorption resonance peak position of the random aggregate depends on the incident and polarization angles of the incident light. The aggregation of the nanoparticles often inherently occurs in the biological medium which affects the photothermal process. This study helps to understand the photothermal heating of nanoparticle aggregates and the use of the optimal light source concerning the absorption peak of the aggregates suspension for therapeutic uses.
In this Letter we show how a single beam optical trap offers the means for three-dimensional manipulation of semiconductor nanorods in solution. Furthermore rotation of the direction of the electric field provides control over the orientation of the nanorods, which is shown by polarisation analysis of two photon induced fluorescence. Statistics over tens of trapped agglomerates reveal a correlation between the measured degree of polarisation, the trap stiffness and the intensity of the emitted light, confirming that we are approaching the single particle limit.
Adherent cells exert traction forces on to their environment, which allows them to migrate, to maintain tissue integrity, and to form complex multicellular structures. This traction can be measured in a perturbation-free manner with traction force mi croscopy (TFM). In TFM, traction is usually calculated via the solution of a linear system, which is complicated by undersampled input data, acquisition noise, and large condition numbers for some methods. Therefore, standard TFM algorithms either employ data filtering or regularization. However, these approaches require a manual selection of filter- or regularization parameters and consequently exhibit a substantial degree of subjectiveness. This shortcoming is particularly serious when cells in different conditions are to be compared because optimal noise suppression needs to be adapted for every situation, which invariably results in systematic errors. Here, we systematically test the performance of new methods from computer vision and Bayesian inference for solving the inverse problem in TFM. We compare two classical schemes, L1- and L2-regularization, with three previously untested schemes, namely Elastic Net regularization, Proximal Gradient Lasso, and Proximal Gradient Elastic Net. Overall, we find that Elastic Net regularization, which combines L1 and L2 regularization, outperforms all other methods with regard to accuracy of traction reconstruction. Next, we develop two methods, Bayesian L2 regularization and Advanced Bayesian L2 regularization, for automatic, optimal L2 regularization. Using artificial data and experimental data, we show that these methods enable robust reconstruction of traction without requiring a difficult selection of regularization parameters specifically for each data set. Thus, Bayesian methods can mitigate the considerable uncertainty inherent in comparing cellular traction forces.
The role and importance of mechanical properties of cells and tissues in cellular function, development as well as disease has widely been acknowledged, however standard techniques currently used to assess them exhibit intrinsic limitations. Recently , a new type of optical elastography, namely Brillouin microscopy, has emerged as a non-destructive, label- and contact-free method which can probe the viscoelastic properties of biological samples with diffraction-limited resolution in 3D. This has led to increased attention amongst the biological and medical research communities, but also to debates about the interpretation and relevance of the measured physical quantities. Here, we review this emerging technology by describing the underlying biophysical principles and discussing the interpretation of Brillouin spectra arising from heterogeneous biological matter. We further elaborate on the techniques limitations as well as its potential for new insights in biology in order to guide interested researchers from various fields.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا