ﻻ يوجد ملخص باللغة العربية
A method for time differentiation based on a Babinet-Soleil-Bravais compensator is introduced. The complex transfer function of the device is measured using polarization spectral interferometry. Time differentiation of both the pulse field and pulse envelope are demonstrated over a spectral width of about 100 THz with a measured overlap with the objective mode greater than 99.8%. This pulse shaping technique is shown to be perfectly suited to time metrology at the quantum limit.
Advances of quantum control technology have led to nearly perfect single-qubit control of nuclear spins and atomic hyperfine ground states. In contrast, quantum control of strong optical transitions, even for free atoms, are far from being perfect. D
This paper describes the demonstration of linearly polarized picosecond pulse shaping with variable profiles including symmetric and non-symmetric intensity distributions. Important characteristics such as stability and transmission were studied, res
The temporal-mode (TM) basis is a prime candidate to perform high-dimensional quantum encoding. Quantum frequency conversion has been employed as a tool to perform tomographic analysis and manipulation of ultrafast states of quantum light necessary t
Quantum enhancements of precision in metrology can be compromised by system imperfections. These may be mitigated by appropriate optimization of the input state to render it robust, at the expense of making the state difficult to prepare. In this pap
Making use of coherence and entanglement as metrological quantum resources allows to improve the measurement precision from the shot-noise- or quantum limit to the Heisenberg limit. Quantum metrology then relies on the availability of quantum enginee