ترغب بنشر مسار تعليمي؟ اضغط هنا

XRB continuum fitting with sensitive high energy X-ray detectors

75   0   0.0 ( 0 )
 نشر من قبل Michael Parker
 تاريخ النشر 2019
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The launch of the Nuclear Spectroscopic Telescope Array (NuSTAR) heralded a new era of sensitive high energy X-ray spectroscopy for X-ray binaries (XRBs). In this paper we show how multiple physical parameters can be measured from the accretion disk spectrum when the high-energy side of the disk spectrum can be measured precisely using NuSTAR. This immediately makes two exciting developments possible. If the mass and distance of the source are known, the continuum fitting method can be used to calculate the spin and inner disk inclination independently of the iron line fitting method. If the mass and distance are unknown, the two methods can be combined to constrain these values to a narrow region of parameter space. In this paper we perform extensive simulations to establish the reliability of these techniques. We find that with high quality spectra, spin and inclination can indeed be simultaneously measured using the disk spectrum. These measurements are much more precise at higher spin values, where the relativistic effects are stronger. The inclusion of a soft X-ray snapshot observation alongside the NuSTAR data significantly improves the reliability, particularly for lower temperature disks, as it gives a greatly improved measurement of the disk peak. High signal to noise data are not necessary for this, as measuring the peak temperature is relatively easy. We discuss the impact of systematic effects on this technique, and the implications of our results such as robust measurements of accretion disk warps and XRB mass surveys.



قيم البحث

اقرأ أيضاً

We develop a new model for X-ray emission from tidal disruption events (TDEs), applying stationary general relativistic ``slim disk accretion solutions to supermassive black holes (SMBHs) and then ray-tracing the photon trajectories from the image pl ane to the disk surface, including gravitational redshift, Doppler, and lensing effects self-consistently. We simultaneously and successfully fit the multi-epoch XMM-Newton X-ray spectra for two TDEs: ASASSN-14li and ASASSN-15oi. We test explanations for the observed, unexpectedly slow X-ray brightening of ASASSN-15oi, including delayed disk formation and variable obscuration by a reprocessing layer. We propose a new mechanism that better fits the data: a ``Slimming Disk scenario in which accretion onto an edge-on disk slows, reducing the disk height and exposing more X-rays from the inner disk to the sightline over time.For ASASSN-15oi, we constrain the SMBH mass to $4.0^{+2.5}_{-3.1} times 10^6M_odot$. For ASASSN-14li, the SMBH mass is $10^{+1}_{-7}times 10^6M_odot$ and the spin is $>0.3$. For both TDEs, our fitted masses are consistent with independent estimates; for ASASSN-14li, application of the external mass constraint narrows our spin constraint to $>0.85$. The mass accretion rate of ASASSN-14li decays slowly, as $propto t^{-1.1}$, perhaps due to inefficient debris circularization. Over $approx$1100 days, its SMBH has accreted $Delta M approx 0.17 M_odot$, implying a progenitor star mass of $> 0.34 M_odot$, i.e., no ``missing energy problem. For both TDEs, the hydrogen column density declines to the host galaxy plus Milky Way value after a few hundred days, suggesting a characteristic timescale for the depletion or removal of obscuring gas.
Small angle scattering by dust grains causes a significant contribution to the total interstellar extinction for any X-ray instrument with sub-arcminute resolution (Chandra, Swift, XMM-Newton). However, the dust scattering component is not included i n the current absorption models: phabs, tbabs, and tbnew. We simulate a large number of Chandra spectra to explore the bias in the spectral fit and NH measurements obtained without including extinction from dust scattering. We find that without incorporating dust scattering, the measured NH will be too large by a baseline level of 25%. This effect is modulated by the imaging resolution of the telescope, because some amount of unresolved scattered light will be captured within the aperture used to extract point source information. In high resolution spectroscopy, dust scattering significantly enhances the total extinction optical depth and the shape of the photoelectric absorption edges. We focus in particular on the Fe-L edge at 0.7 keV, showing that the total extinction template fits well to the high resolution spectrum of three X-ray binaries from the Chandra archive: GX 9+9, XTE J1817-330, and Cyg X-1. In cases where dust is intrinsic to the source, a covering factor based on the angular extent of the dusty material must be applied to the extinction curve, regardless of angular imaging resolution. This approach will be particularly relevant for dust in quasar absorption line systems and might constrain clump sizes in active galactic nuclei.
We report on the first ten identifications of sources serendipitously detected by the NuSTAR to provide the first sensitive census of the cosmic X-ray background (CXB) source population at >10 keV. We find that these NuSTAR-detected sources are ~100x fainter than those previously detected at >10 keV and have a broad range in redshift and luminosity (z=0.020-2.923 and L_10-40 keV~4x10^{41}-5x10^{45} erg/s); the median redshift and luminosity are z~0.7 and L_10-40 keV~3x10^{44} erg/s, respectively. We characterize these sources on the basis of broad-band ~0.5-32 keV spectroscopy, optical spectroscopy, and broad-band ultraviolet-to-mid-infrared SED analyzes. We find that the dominant source population is quasars with L_10-40 keV>10^{44} erg/s, of which ~50% are obscured with N_H>10^{22} cm^{-2}. However, none of the ten NuSTAR sources are Compton thick (N_H>10^{24} cm^{-2}) and we place a 90% confidence upper limit on the fraction of Compton-thick quasars (L_10-40 keV>10^{44} erg/s) selected at >10 keV of ~33% over the redshift range z=0.5-1.1. We jointly fitted the rest-frame ~10-40 keV data for all of the non-beamed sources with L_10-40 keV>10^{43} erg/s to constrain the average strength of reflection; we find R<1.4 for Gamma=1.8, broadly consistent with that found for local AGNs observed at >10 keV. We also constrain the host galaxy masses and find a median stellar mass of ~10^{11} M_sun, a factor ~5 times higher than the median stellar mass of nearby high-energy selected AGNs, which may be at least partially driven by the order of magnitude higher X-ray luminosities of the NuSTAR sources. Within the low source-statistic limitations of our study, our results suggest that the overall properties of the NuSTAR sources are broadly similar to those of nearby high-energy selected AGNs but scaled up in luminosity and mass.
The cosmic X-ray background (CXB), which peaks at an energy of ~30 keV, is produced primarily by emission from accreting supermassive black holes (SMBHs). The CXB therefore serves as a constraint on the integrated SMBH growth in the Universe and the accretion physics and obscuration in active galactic nuclei (AGNs). This paper gives an overview of recent progress in understanding the high-energy (>~10 keV) X-ray emission from AGNs and the synthesis of the CXB, with an emphasis on results from NASAs NuSTAR hard X-ray mission. We then discuss remaining challenges and open questions regarding the nature of AGN obscuration and AGN physics. Finally, we highlight the exciting opportunities for a next-generation, high-resolution hard X-ray mission to achieve the long-standing goal of resolving and characterizing the vast majority of the accreting SMBHs that produce the CXB.
104 - Long Ji , Shu Zhang , YuPeng Chen 2013
To investigate the possible cooling of the corona by soft X-rays bursts, we have studied 114 bursts embedded in the known X-ray evolution of 4U 1636-536. We have grouped these bursts according to the ratio of the flux in the 1.5--12 keV band with res pect to that in the 15--50 keV band, as monitored by RXTE/ASM and Swift/BAT, respectively. We have detected a shortage at hard X-rays while bursting. This provides hints for a corona cooling process driven by soft X-rays fed by the bursts that occurred on the surface of neutron star. The flux shortage at 30--50 keV has a time lag of 2.4$pm$1.5 seconds with respect to that at 2--10 keV, which is comparable to that of 0.7$pm$0.5 seconds reported in bursts of IGR 17473-2721. We comment on the possible origin of these phenomena and on the implications for the models on the location of the corona.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا