ترغب بنشر مسار تعليمي؟ اضغط هنا

The NuSTAR Extragalactic Survey: A First Sensitive Look at the High-Energy Cosmic X-ray Background Population

142   0   0.0 ( 0 )
 نشر من قبل D. M. Alexander
 تاريخ النشر 2013
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We report on the first ten identifications of sources serendipitously detected by the NuSTAR to provide the first sensitive census of the cosmic X-ray background (CXB) source population at >10 keV. We find that these NuSTAR-detected sources are ~100x fainter than those previously detected at >10 keV and have a broad range in redshift and luminosity (z=0.020-2.923 and L_10-40 keV~4x10^{41}-5x10^{45} erg/s); the median redshift and luminosity are z~0.7 and L_10-40 keV~3x10^{44} erg/s, respectively. We characterize these sources on the basis of broad-band ~0.5-32 keV spectroscopy, optical spectroscopy, and broad-band ultraviolet-to-mid-infrared SED analyzes. We find that the dominant source population is quasars with L_10-40 keV>10^{44} erg/s, of which ~50% are obscured with N_H>10^{22} cm^{-2}. However, none of the ten NuSTAR sources are Compton thick (N_H>10^{24} cm^{-2}) and we place a 90% confidence upper limit on the fraction of Compton-thick quasars (L_10-40 keV>10^{44} erg/s) selected at >10 keV of ~33% over the redshift range z=0.5-1.1. We jointly fitted the rest-frame ~10-40 keV data for all of the non-beamed sources with L_10-40 keV>10^{43} erg/s to constrain the average strength of reflection; we find R<1.4 for Gamma=1.8, broadly consistent with that found for local AGNs observed at >10 keV. We also constrain the host galaxy masses and find a median stellar mass of ~10^{11} M_sun, a factor ~5 times higher than the median stellar mass of nearby high-energy selected AGNs, which may be at least partially driven by the order of magnitude higher X-ray luminosities of the NuSTAR sources. Within the low source-statistic limitations of our study, our results suggest that the overall properties of the NuSTAR sources are broadly similar to those of nearby high-energy selected AGNs but scaled up in luminosity and mass.



قيم البحث

اقرأ أيضاً

The cosmic X-ray background (CXB), which peaks at an energy of ~30 keV, is produced primarily by emission from accreting supermassive black holes (SMBHs). The CXB therefore serves as a constraint on the integrated SMBH growth in the Universe and the accretion physics and obscuration in active galactic nuclei (AGNs). This paper gives an overview of recent progress in understanding the high-energy (>~10 keV) X-ray emission from AGNs and the synthesis of the CXB, with an emphasis on results from NASAs NuSTAR hard X-ray mission. We then discuss remaining challenges and open questions regarding the nature of AGN obscuration and AGN physics. Finally, we highlight the exciting opportunities for a next-generation, high-resolution hard X-ray mission to achieve the long-standing goal of resolving and characterizing the vast majority of the accreting SMBHs that produce the CXB.
We present the first full catalog and science results for the NuSTAR serendipitous survey. The catalog incorporates data taken during the first 40 months of NuSTAR operation, which provide ~20Ms of effective exposure time over 331 fields, with an are al coverage of 13 sq deg, and 497 sources detected in total over the 3-24 keV energy range. There are 276 sources with spectroscopic redshifts and classifications, largely resulting from our extensive campaign of ground-based spectroscopic followup. We characterize the overall sample in terms of the X-ray, optical, and infrared source properties. The sample is primarily comprised of active galactic nuclei (AGNs), detected over a large range in redshift from z = 0.002 - 3.4 (median of <z> = 0.56), but also includes 16 spectroscopically confirmed Galactic sources. There is a large range in X-ray flux, from log( f_3-24keV / erg s^-1 cm^-2 ) ~ -14 to -11, and in rest-frame 10-40 keV luminosity, from log( L_10-40keV / erg s^-1 ) ~ 39 to 46, with a median of 44.1. Approximately 79% of the NuSTAR sources have lower energy (<10 keV) X-ray counterparts from XMM-Newton, Chandra, and Swift/XRT. The mid-infrared (MIR) analysis, using WISE all-sky survey data, shows that MIR AGN color selections miss a large fraction of the NuSTAR-selected AGN population, from ~15% at the highest luminosities (Lx > 10^44 erg s^-1) to ~80% at the lowest luminosities (Lx < 10^43 erg s^-1). Our optical spectroscopic analysis finds that the observed fraction of optically obscured AGNs (i.e., the Type 2 fraction) is F_Type2 = 53(+14-15)%, for a well-defined subset of the 8-24 keV selected sample. This is higher, albeit at a low significance level, than the Type 2 fraction measured for redshift- and luminosity-matched AGNs selected by <10 keV X-ray missions.
We present measurements of the intensity of the Cosmic X-ray Background (CXB) with the NuSTAR telescope in the 3-20 keV energy range. Our method uses spatial modulation of the CXB signal on the NuSTAR detectors through the telescopes side aperture. B ased on the NuSTAR observations of selected extragalactic fields with a total exposure of 7 Ms, we have estimated the CXB 3-20 keV flux to be 2.8E-11 erg/s/cm^2/deg^2, which is ~8 higher than measured with HEAO-1 and consistent with the INTEGRAL measurement. The inferred CXB spectral shape in the 3-20 keV energy band is consistent with the canonical model of Gruber et al. We demonstrate that the spatially modulated CXB signal measured by NuSTAR is not contaminated by systematic noise and is limited by photon statistics. The measured relative scatter of the CXB intensity between different sky directions is compatible with cosmic variance, which opens new possibilities for studying CXB anisotropy over the whole sky with NuSTAR.
We explore the possibility that the recently detected dipole anisotropy in the arrival directions of~$>8$~EeV ultra-high energy cosmic-rays (UHECRs) arises due to the large-scale structure (LSS). We assume that the cosmic ray sources follow the matte r distribution and calculate the flux-weighted UHECRs RMS dipole amplitude taking into account the diffusive transport in the intergalactic magnetic field (IGMF). We find that the flux-weighted RMS dipole amplitude is $sim8$% before entering the Galaxy. The amplitude in the [4-8] EeV is only slightly lower $sim 5$%. The required IGMF is of the order of {5-30 nG}, and the UHECR sources must be relatively nearby, within $sim$300 Mpc. The absence of statistically significant signal in the lower energy bin can be explained if the same nuclei specie dominates the composition in both energy bins and diffusion in the Galactic magnetic field (GMF) reduces the dipole of these lower rigidity particles. Photodisintegration of higher energy UHECRs could also reduce somewhat the lower energy dipole.
We present a study of the average X-ray spectral properties of the sources detected by the NuSTAR extragalactic survey, comprising observations of the E-CDFS, EGS and COSMOS fields. The sample includes 182 NuSTAR sources (64 detected at 8-24 keV), wi th 3-24 keV fluxes ranging between $f_{rm 3-24 keV}approx10^{-14}$ and $6times10^{-13}$ erg/cm$^2$/s ($f_{rm 8-24 keV}approx3times10^{-14}-3times10^{-13}$ erg/cm$^2$/s) and redshifts of $z=0.04-3.21$. We produce composite spectra from the Chandra+NuSTAR data ($Eapprox2-40$ keV, rest frame) for all the sources with redshift identifications (95%) and investigate the intrinsic, average spectra of the sources, divided into broad-line (BL) and narrow-line (NL) AGN, and also in different bins of X-ray column density and luminosity. The average power-law photon index for the whole sample is $Gamma=1.65_{-0.03}^{+0.03}$, flatter than $Gammaapprox1.8$ typically found for AGN. While the spectral slope of BL and X-ray unabsorbed AGN is consistent with typical values ($Gamma=1.79_{-0.01}^{+0.01}$), a significant flattening is seen in NL AGN and heavily-absorbed sources ($Gamma=1.60_{-0.05}^{+0.08}$ and $Gamma=1.38_{-0.12}^{+0.12}$, respectively), likely due to the effect of absorption and to the contribution from Compton reflection to the high-energy flux (E>10 keV). We find that the typical reflection fraction in our spectra is $Rapprox0.5$ (for $Gamma=1.8$), with a tentative indication of an increase of the reflection strength with column density. While there is no significant evidence for a dependence of the photon index with X-ray luminosity in our sample, we find that $R$ decreases with luminosity, with relatively high levels of reflection ($Rapprox1.2$) for $L_{rm 10-40 keV}<10^{44}$ erg/s and $Rapprox0.3$ for $L_{rm 10-40 keV}>10^{44}$ erg/s AGN, assuming $Gamma=1.8$.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا