ترغب بنشر مسار تعليمي؟ اضغط هنا

The dust scattering component of X-ray extinction: Effects on continuum fitting and high-resolution absorption edge structure

59   0   0.0 ( 0 )
 نشر من قبل Lia Corrales
 تاريخ النشر 2016
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Small angle scattering by dust grains causes a significant contribution to the total interstellar extinction for any X-ray instrument with sub-arcminute resolution (Chandra, Swift, XMM-Newton). However, the dust scattering component is not included in the current absorption models: phabs, tbabs, and tbnew. We simulate a large number of Chandra spectra to explore the bias in the spectral fit and NH measurements obtained without including extinction from dust scattering. We find that without incorporating dust scattering, the measured NH will be too large by a baseline level of 25%. This effect is modulated by the imaging resolution of the telescope, because some amount of unresolved scattered light will be captured within the aperture used to extract point source information. In high resolution spectroscopy, dust scattering significantly enhances the total extinction optical depth and the shape of the photoelectric absorption edges. We focus in particular on the Fe-L edge at 0.7 keV, showing that the total extinction template fits well to the high resolution spectrum of three X-ray binaries from the Chandra archive: GX 9+9, XTE J1817-330, and Cyg X-1. In cases where dust is intrinsic to the source, a covering factor based on the angular extent of the dusty material must be applied to the extinction curve, regardless of angular imaging resolution. This approach will be particularly relevant for dust in quasar absorption line systems and might constrain clump sizes in active galactic nuclei.

قيم البحث

اقرأ أيضاً

The launch of the Nuclear Spectroscopic Telescope Array (NuSTAR) heralded a new era of sensitive high energy X-ray spectroscopy for X-ray binaries (XRBs). In this paper we show how multiple physical parameters can be measured from the accretion disk spectrum when the high-energy side of the disk spectrum can be measured precisely using NuSTAR. This immediately makes two exciting developments possible. If the mass and distance of the source are known, the continuum fitting method can be used to calculate the spin and inner disk inclination independently of the iron line fitting method. If the mass and distance are unknown, the two methods can be combined to constrain these values to a narrow region of parameter space. In this paper we perform extensive simulations to establish the reliability of these techniques. We find that with high quality spectra, spin and inclination can indeed be simultaneously measured using the disk spectrum. These measurements are much more precise at higher spin values, where the relativistic effects are stronger. The inclusion of a soft X-ray snapshot observation alongside the NuSTAR data significantly improves the reliability, particularly for lower temperature disks, as it gives a greatly improved measurement of the disk peak. High signal to noise data are not necessary for this, as measuring the peak temperature is relatively easy. We discuss the impact of systematic effects on this technique, and the implications of our results such as robust measurements of accretion disk warps and XRB mass surveys.
(Abbrev.) We present high-resolution spectroscopy of the oxygen K-shell interstellar absorption edge in 7 X-ray binaries using the HETGS onboard Chandra. Using the brightest sources as templates, we found a best-fit model of 2 absorption edges and 5 Gaussian absorption lines. All of these features can be explained by the recent predictions of K-shell absorption from neutral and ionized atomic oxygen. We identify the K alpha and K beta absorption lines from neutral oxygen, as well as the S=3/2 absorption edge. The expected S=1/2 edge is not detected in these data due to overlap with instrumental features. We also identify the K alpha absorption lines from singly and doubly ionized oxygen. The OI K alpha absorption line is used as a benchmark with which to adjust the absolute wavelength scale for theoretical predictions of the absorption cross-sections. We find that shifts of 30-50 mA are required, consistent with differences previously noticed from comparisons of the theory with laboratory measurements. Significant oxygen features from dust or molecular components, as suggested in previous studies, are not required by our HETGS spectra. With these spectra, we can begin to measure the large-scale properties of the ISM. We place a limit on the velocity dispersion of the neutral lines of <200 km s^{-1}, consistent with measurements at other wavelengths. We also make the first measurement of the oxygen ionization fractions in the ISM. We constrain the interstellar ratio of OII/OI to ~0.1 and the ratio of OIII/OI to <0.1.
We develop a new model for X-ray emission from tidal disruption events (TDEs), applying stationary general relativistic ``slim disk accretion solutions to supermassive black holes (SMBHs) and then ray-tracing the photon trajectories from the image pl ane to the disk surface, including gravitational redshift, Doppler, and lensing effects self-consistently. We simultaneously and successfully fit the multi-epoch XMM-Newton X-ray spectra for two TDEs: ASASSN-14li and ASASSN-15oi. We test explanations for the observed, unexpectedly slow X-ray brightening of ASASSN-15oi, including delayed disk formation and variable obscuration by a reprocessing layer. We propose a new mechanism that better fits the data: a ``Slimming Disk scenario in which accretion onto an edge-on disk slows, reducing the disk height and exposing more X-rays from the inner disk to the sightline over time.For ASASSN-15oi, we constrain the SMBH mass to $4.0^{+2.5}_{-3.1} times 10^6M_odot$. For ASASSN-14li, the SMBH mass is $10^{+1}_{-7}times 10^6M_odot$ and the spin is $>0.3$. For both TDEs, our fitted masses are consistent with independent estimates; for ASASSN-14li, application of the external mass constraint narrows our spin constraint to $>0.85$. The mass accretion rate of ASASSN-14li decays slowly, as $propto t^{-1.1}$, perhaps due to inefficient debris circularization. Over $approx$1100 days, its SMBH has accreted $Delta M approx 0.17 M_odot$, implying a progenitor star mass of $> 0.34 M_odot$, i.e., no ``missing energy problem. For both TDEs, the hydrogen column density declines to the host galaxy plus Milky Way value after a few hundred days, suggesting a characteristic timescale for the depletion or removal of obscuring gas.
We report the development of a laboratory-based Rowland-circle monochromator that incorporates a low poer x-ray (bremsstrahlung) tube source, a spherically-bent crystal analyzer (SBCA), and an energy-resolving solid-state detector. This relatively in expensive, introductory level instrument achieves 1-eV energy resolution for photon energies of 5 keV to 10 keV while also dmeonstrating a net efficiency previously seen only in laboratory monochromators having much coarser energy resolution. Despite the use of only a compact, air-cooled 10 W x-ray tube, we find count rates for nonresonant x-ray emission spectroscopy (XES) comparable to those achived at monochromatized spectroscopy beamlines at synchrotron light sources. For x-ray absorption near edge structure (XANES), the monochromatized flux is small (due to the use of a low-powered x-ray generator) but still useful for routine transmission-mode studies of concentrated samples. These results indicate that upgrading to a standard commercial high-powered line-focused x-ray tube or rotating anode x-ray generator would result in monochromatized fluxes of order 10^6 to 10^7 photons/s with no loss in energy resolution. This work establishes core technical capabilities for a rejuvenation of laboratory-based x-ray spectroscopies that could have special relevance for contemporary research on catalytic or electrical energy storage systems using transition-metal, lanthanide, or noble-metal active species.
55 - S.T. Zeegers 2019
The composition and properties of interstellar silicate dust are not well understood. In X-rays, interstellar dust can be studied in detail by making use of the fine structure features in the Si K-edge. The features in the Si K-edge offer a range of possibilities to study silicon-bearing dust, such as investigating the crystallinity, abundance, and the chemical composition along a given line of sight. We present newly acquired laboratory measurements of the silicon K-edge of several silicate-compounds that complement our measurements from our earlier pilot study. The resulting dust extinction profiles serve as templates for the interstellar extinction that we observe. The extinction profiles were used to model the interstellar dust in the dense environments of the Galaxy. The laboratory measurements, taken at the Soleil synchrotron facility in Paris, were adapted for astrophysical data analysis and implemented in the SPEX spectral fitting program. The models were used to fit the spectra of nine low-mass X-ray binaries located in the Galactic center neighborhood in order to determine the dust properties along those lines of sight. Most lines of sight can be fit well by amorphous olivine. We also established upper limits on the amount of crystalline material that the modeling allows. We obtained values of the total silicon abundance, silicon dust abundance, and depletion along each of the sightlines. We find a possible gradient of $0.06pm0.02$ dex/kpc for the total silicon abundance versus the Galactocentric distance. We do not find a relation between the depletion and the extinction along the line of sight.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا