ترغب بنشر مسار تعليمي؟ اضغط هنا

Realization of Kondo chain in CeCo$_2$Ga$_8$

81   0   0.0 ( 0 )
 نشر من قبل Yongkang Luo Prof.
 تاريخ النشر 2019
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We revisited the anisotropy of the heavy-fermion material CeCo$_2$Ga$_8$ by measuring the electrical resistivity and magnetic susceptibility along all the principal $mathbf{a}$-, $mathbf{b}$- and $mathbf{c}$-axes. Resistivity along $mathbf{c}$-axis ($rho_c$) shows clear Kondo coherence below about 17 K, while both $rho_{a}$ and $rho_{b}$ remain incoherent down to 2 K. The magnetic anisotropy is well understood within the theoretical frame of crystalline electric field effect in combination with magnetic exchange interactions. We found the anisotropy ratio of these magnetic exchange interactions, $|J_{ex}^c/J_{ex}^{a,b}|$, reaches a large value of 4-5. We, therefore, firmly demonstrate that CeCo$_2$Ga$_8$ is a quasi-one-dimensional heavy-fermion compound both electrically and magnetically, and thus provide a realistic example of textit{Kondo chain}.



قيم البحث

اقرأ أيضاً

We studied the physical properties of two Kondo-lattice compounds, CeRu$_2$As$_2$ and CeIr$_2$As$_2$, by a combination of electric transport, magnetic and thermodynamic measurements. They are of ThCr$_2$Si$_2$-type and CaBe$_2$Ge$_2$-type crystalline structures, respectively. CeRu$_2$As$_2$ shows localized long-range antiferromagnetic ordering below $T_N$=4.3 K, with a moderate electronic Sommerfeld coefficient $gamma_0$=35 mJ/mol$cdot$K$^2$. A field-induced metamagnetic transition is observed near 2 T below $T_N$. Magnetic susceptibility measurements on aligned CeRu$_2$As$_2$ powders suggest that it has an easy axis and that the cerium moments align uniaxially along $mathbf{c}$ axis. In contrast, CeIr$_2$As$_2$ is a magnetically nonordered heavy-fermion metal with enhanced $gamma_0$$>$300 mJ/mol$cdot$K$^2$. The initial onset Kondo temperatures of the two compounds are respectively 6 K and 30 K. We discuss the role of the crystal structure to the strength of Kondo coupling. This work provides two new dense Kondo-lattice materials for further investigations on electronic correlation, quantum criticality and heavy-electron effects.
We report the physical properties and electronic structure calculations of a layered chromium oxypnictide, Sr$_2$Cr$_3$As$_2$O$_2$, which crystallizes in a Sr$_2$Mn$_3$As$_2$O$_2$-type structure containing both CrO$_2$ planes and Cr$_2$As$_2$ layers. The newly synthesized material exhibits a metallic conduction with a dominant electron-magnon scattering. Magnetic and specific-heat measurements indicate at least two intrinsic magnetic transitions below room temperature. One is an antiferromagnetic transition at 291 K, probably associated with a spin ordering in the Cr$_2$As$_2$ layers. Another transition is broad, occurring at around 38 K, and possibly due to a short-range spin order in the CrO$_2$ planes. Our first-principles calculations indicate predominant two-dimensional antiferromagnetic exchange couplings, and suggest a KG-type (i.e. K$_2$NiF$_4$ type for CrO$_2$ planes and G type for Cr$_2$As$_2$ layers) magnetic structure, with reduced moments for both Cr sublattices. The corresponding electronic states near the Fermi energy are mostly contributed from Cr-3$d$ orbitals which weakly (modestly) hybridize with the O-2$p$ (As-4$p$) orbitals in the CrO$_2$ (Cr$_2$As$_2$) layers. The bare bandstructure density of states at the Fermi level is only $sim$1/4 of the experimental value derived from the low-temperature specific-heat data, consistent with the remarkable electron-magnon coupling. The title compound is argued to be a possible candidate to host superconductivity.
We study the magnetism in NdFe$_2$Ga$_8$ by the neutron-diffraction and thermal-expansion techniques. Thermodynamical measurements have demonstrated that there are two magnetic transitions at 10 and 14.5 K, respectively. Neutron-diffraction measureme nts confirm that the lower one is an antiferromagnetic transition with a commensurate magnetic structure. Both the commensurate and incommensurate magnetic peaks are found below the higher transition but their intensities only gradually increases with decreasing temperature. Below 10 K, the commensurate peak intensity increases quickly with decreasing temperature, signaling the antiferromagnetic transition, while the incommensurate peak intensity disappears below 5 K. We attribute the high-temperature magnetic transition as a multipolar order, which induces incommensurate magnetic peaks. The multipolar ordering is suppressed by field at about 7 T, where the linear {Gruneisen} parameter along $c$-axis diverges with decreasing temperature as $T^{-1}$. Our results suggest that NdFe$_2$Ga$_8$ exhibits a multipolar density wave that is analogous to the spin density wave for the dipole moment.
We investigate the high-energy magnetic excitation spectrum of the high-$T_c$ cuprate superconductor Bi$_2$Sr$_2$CaCu$_2$O$_{8+delta}$ (Bi-2212) using Cu $L_3$ edge resonant inelastic x-ray scattering (RIXS). Broad, dispersive magnetic excitations ar e observed, with a zone boundary energy of $sim$300 meV and a weak dependence on doping. These excitations are strikingly similar to the bosons proposed to explain the high-energy `kink observed in photoemission. A calculation of the spin-response based on the ARPES-derived electronic structure and YRZ-quasi-particles reproduces the key features of the observed magnetic dispersions with no adjustable parameters. These results show that it is possible to reconcile the magnetic and electronic properties of the cuprates within a unified framework.
407 - W. Zhang , H. Y. Lu , D. H. Xie 2018
Hidden order in URu$_2$Si$_2$ has remained a mystery now entering its 4th decade. The importance of resolving the nature of the hidden order has stimulated extensive research. Here we present a detailed characterization of different surface terminati ons in URu$_2$Si$_2$ by angle-resolved photoemission spectroscopy, in conjunction with scanning tunneling spectroscopy and DMFT calculations that may unveil a new piece of this puzzle. The U-terminated surface is characterized by an electron-like band around the $bar{X}$ point, while a hole-like band for the Si-terminated surface. We also investigate temperature evolution of the electronic structure around the $bar{X}$ point from 11 K up to 70 K, and did not observe any abrupt change of the electronic structure around the coherence temperature (55 K). The $f$ spectral weight gradually weakens upon increasing temperature, still some $f$ spectral weight can be found above this temperature. Our results suggest that surface terminations in URu$_2$Si$_2$ are an important issue to be taken into account in future work.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا