ﻻ يوجد ملخص باللغة العربية
The Sachdev-Ye-Kitaev (SYK) model is an all-to-all interacting Majorana fermion model for many-body quantum chaos and the holographic correspondence. Here we construct fermionic all-to-all Floquet quantum circuits of random four-body gates designed to capture key features of SYK dynamics. Our circuits can be built using local ingredients in Majorana devices, namely charging-mediated interactions and braiding Majorana zero modes. This offers an analog-digital route to SYK quantum simulations that reconciles all-to-all interactions with the topological protection of Majorana zero modes, a key feature missing in existing proposals for analog SYK simulation. We also describe how dynamical, including out-of-time-ordered, correlation functions can be measured in such analog-digital implementations by employing foreseen capabilities in Majorana devices.
The Sachdev-Ye-Kitaev (SYK) model, in its simplest form, describes $k$ Majorana fermions with random all-to-all four-body interactions. We consider the SYK model in the framework of a many-body Altland-Zirnbauer classification that sees the system as
We study a simplified version of the Sachdev-Ye-Kitaev (SYK) model with real interactions by exact diagonalization. Instead of satisfying a continuous Gaussian distribution, the interaction strengths are assumed to be chosen from discrete values with
Given a class of $q$-local Hamiltonians, is it possible to find a simple variational state whose energy is a finite fraction of the ground state energy in the thermodynamic limit? Whereas product states often provide an affirmative answer in the case
We study spectral and thermodynamic properties of the Sachdev-Ye-Kitaev model, a variant of the $k$-body embedded random ensembles studied for several decades in the context of nuclear physics and quantum chaos. We show analytically that the fourth a
Supersymmetry is a powerful concept in quantum many-body physics. It helps to illuminate ground state properties of complex quantum systems and gives relations between correlation functions. In this work, we show that the Sachdev-Ye-Kitaev model, in